• Title/Summary/Keyword: cysteine-ascorbate

Search Result 19, Processing Time 0.028 seconds

Pyruvate Protects Giardia Trophozoites from Cysteine-Ascorbate Deprived Medium Induced Cytotoxicity

  • Raj, Dibyendu;Chowdhury, Punam;Sarkar, Rituparna;Saito-Nakano, Yumiko;Okamoto, Keinosuke;Dutta, Shanta;Nozaki, Tomoyoshi;Ganguly, Sandipan
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.

Role of Intracellular $Ca^{2+}$ Signal in the Ascorbate-Induced Apoptosis in a Human Hepatoma Cell Line

  • Lee , Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1245-1252
    • /
    • 2004
  • Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the ascorbate-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas dantrolene, an intracellular $Ca^{2+}$ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular $Ca^{2+}$ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular $Ca^{2+}$ release mechanism may mediate ascorbate-induced apoptosis.

Role of Ascorbic Acid in the Depolymerization of Hyaluronic Acid by $Fe^{++}$ and $H_2O_2$ ($Fe^{++}$$H_2O_2$에 의한 hyaluronic acid 분해에 있어서 ascorbic acid의 역할)

  • Lee, Jung-Soo;Chung, Myung-Hee;Lim, Jung-Kyoo;Park, Chan-Woong;Cha, In-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.62-77
    • /
    • 1985
  • In tile Iron-catalyzed Haber-Weiss reaction to produce OH., the requirement for $O^{-}_{2}{\cdot}$ is only to reduce $Fe^{+++}$. Possibly, the role of $O^{-}_{2}{\cdot}$ can be replaced by other reducing agents. Ascorbate is one of them in biological system. In the present study, the ability of ascorbate to produce $OH{\cdot}$ in the presence of $Fe^{++}$ and $H_2O_2$ was investigated by observing the degradation of hyaluronic acid and ethylene production from methional. Ascorbate stimulated the degradation of hyaluronic by $Fe^{++}$ and $H_2O_2$. That was confirmed by both viscosity change and gel-permeation chromatographic analysis. The observed degradation was almost completely prevented by catalase and $OH{\cdot}$ scavengers. In support of the above results, ascorbate enhanced the prouction of ethylene from methional in the presence of $Fe^{++}$ and $H_2O_2$. Other reducing agents (cysteine, glutathione, NADH and NADPH) showed similar activities to ascorbate in the degradation of hyaluronic acid and ethylene production. But no stimulatory effects were observed with their oxidized forms such as NAD and NADP. Thus, it appears that reduction of the metal ion was needed for $OH{\cdot}$ production. Among the metal ions tested, $Fe^{++}$ showed most potent catalytic action in the production of $OH{\cdot}$ The results obtained support that ascorbate can substitute $O^{-}_{2}{\cdot}$ in the metal-catalyzed reactions, particularly with $Fe^{++}$ by which $OH{\cdot}$ is produced with $H_2O_2$. The significance of the ascorbate-dependent production of $OH{\cdot}$ was considered with respect to possible role of ascorbate in the damage of inflamed joints.

  • PDF

Enhancement of Health Functional Compounds in the Sprouts of Barley (Hordeum vulgare L.) Cultivars by UV-B and Salicylic Acid Treatments

  • Kim, Yong-Hyun;Kim, Seong-Min;Cheng, Hyo-Cheng;Lee, Young-Woo;Shim, Ie-Sung
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • Barley (Hordeum vulgare L.) sprouts are a vegetable commonly used as a functional food material due to its high vitamin C concentration and antioxidant activity. In this experiment, we measured the changes in the antioxidant activity of several barley cultivars as well as in the concentrations of related compounds such as ascorbate and glutathione upon treatment with UV-B or salicylic acid (SA). The six barely cultivars were grown in a plant growth chamber (25/$18^{\circ}C$, 14/10 h, 200 ${\mu}mol{\cdot}m^{-1}{\cdot}s^{-1}$, 70% relative humidity) for 10 days. All barely cultivars showed different 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activities, which were increased by UV-B treatment and not by SA treatment. The changes in ascorbate concentrations were correlated with DPPH scavenging activity in both the treatments, suggesting that the antioxidant activity in barley sprouts was mainly dependent on ascorbate concentration. Furthermore, changes in ascorbate concentration showed similar tendencies to changes in free sugar concentration, especially glucose and sucrose, in both treatments. On the other hand, the concentrations of glutathione and cysteine highly increased by SA treatment, representing different tendencies compared to the DPPH scavenging activity and ascorbate concentration. 'Donghanchal' cultivar showed comparatively higher antioxidant activity, both constitutively and inducingly by UV-B treatment, with its higher concentrations of ascorbate and glutathione. These results suggest that barley sprouts could be used as a health-functional vegetable, contributing to the overall supply of antioxidant and sulfur-containing organic compounds.

Isolation and Characterization of Methyl Jasmonate -Inducible Genes in Chinese Cabbage

  • Park, Yong-Soon;Cho, Tae-Ju
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.337-343
    • /
    • 2003
  • Methyl jasmonate (MeJA) is a signal molecule in the activation of defense responses in plants. In this study, we isolated 15 MeJA-inducible genes by subtractive hybridization. These genes encode two myrosinase-binding proteins, five lipase-like proteins, a polygalacturonase inhibitor, a putative chlorophyll-associated protein, a terpene synthase, a dehydroascorbate reductase, an ascorbate oxidase, a cysteine protease, an O-methyltransferase, and an epithiospecifier protein. Northern analysis showed that most of the Chinese cabbage genes are barely expressed in healthy leaves, but are strongly induced by MeJA treatment. We also examined whether these MeJA-inducible genes were activated by ethethon, BTH, and Pseudomonas syringae pv. tomato (Pst), a nonhost pathogen of Chinese cabbage. The results showed that none of the MeJA-inducible genes was strongly induced by ethephon or by BTH. The genes encoding lipase-like proteins and a myrosinase-binding protein were weakly induced by Pst. Other MeJA-inducible genes were not activated at all by the pathogen.

Reaction of Drugs with Sodium Nitroprusside as a Source of Nitrosamines

  • Park, Jeen-Woo;Gary E. Means
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.118-123
    • /
    • 1991
  • Potentially dangerous nitrosamines have been shown to result from the reaction of sodium nitrogusside with several drugs under physiological conditions (pH 7.3 and $37^\circ{C})$. In each case the products were identical to those produced upon reaction with nitrous acid at much lower pH values. Reaction rates were shown to reflect a first order dependence on both amine and nitroprusside concentrations and to increase at higher pH values, approximately in proportion to concentrations of unprotonated amine. Fast reactions of sodium nitroprusside with reduced glutathione, cysteine, and ascorbate suppress but do not prevent the conversion of amines into N-nitrosamines. These results show sodium nitroprusside to be very potent nitrosating agent under physiological conditions and suggested nitrosamines may be formed during its normal pharmacological administration.

  • PDF

Changes of Thiols and Oxidative Stress in Tomato Seedlings Exposed to Cadmium

  • Cho, Un-Haing;Seo, Nam-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2006
  • Tomato (Lycopersicon esculentum Mill) seedlings exposed to various concentrations of $CdCl_2(0{\sim}100{\mu}M)$ in a nutrient solution for up to 9 days were analyzed with respect to the thiol changes and oxidative stress. The Cd exposure increased total non-protein thiols (NPT) and cysteine in both leaves and roots, total glutathione in leaves, and the ratios of oxidized glutathione (GSSG)/reduced glutathione (GSH) in both leaves and roots, but decreased the ratio of dehydroascorbate (DASA)/ascorbate(ASA) in leaves. Our results suggest that the Cd-induced GSH depletion due to thiol synthesis and oxidation alters the antioxidant activity of seedlings for $H_2O_2$, and the subsequent $H_2O_2$ accumulationand oxidative stress result in phytotoxicity.

Protective Action of Ambroxol on the Oxidative Damages of Lipids Hyaluronic Acid and Collagen

  • Ji Young KOH;Yung CHO;Eun Sook HAN;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.111-118
    • /
    • 1998
  • Ambroxol is thought to have antioxidant ability and some antiinflammatory effect. Effect of ambroxol on the oxidative damages of lipid, collagen and hyaluronic acid was examined. F $e_{2+}$(10 $\mu$M) and 100$\mu$Mascorbate-induced lipid peroxidation of liver microsomes was inhibited by 10 and 100$\mu$M ambroxol, 30$\mu$g/ml catalase and 10 mM DABCO but was not affected by 30$\mu$g/ml SOD and 10 mM DMSO. A 10 and 100$\mu$M ambroxol and 10 mM DABCO inhibited the peroxidative action of 10$\mu$M F $e_{3+}$, 160$\mu$M ADP and 100$\mu$M NADPH on microsomal lipids, whereas inhibitory effects of 30$\mu$g/ml SOD,30$\mu$g/ml catalase and 10 mM DMSO were not detected. The degradation of hyaluronic acid caused by 107M Fe2\\`,5007M H2O2 and 100$\mu$M ascorbate was inhibited by 10 and 100$\mu$M ambroxol,30$\mu$g/ml catalase,10 mM DMSO and 10 mM DABCO, while 30$\mu$g/ml SOD did not show any effect. The cartilage collagen degradation caused by 307$\mu$ F $e_{2+}$,500$\mu$M $H_2O$$_2$ and 200$\mu$M ascorbate was prevented by 100$\mu$M ambroxol. $H_2O$$_2$ and OH . were scavenged by ambroxol, whereas $O_2$, was not removed by it. Ambroxol (100$\mu$M) and 1 mM cysteine reduced DPPH to 1,1-diphenyl-2-picrylhydrazine. In conclusion, ambroxol may inhibit the oxidative damages of lipid, hyaluronic acid and collagen by its scavenging action on oxidants, such as OH . and probably iron-oxygen complexes and exert antioxidant ability.

  • PDF

Reaction Characteristics of 4-Methylcatechol 2,3-Dioxygenase from Pseudomonas putida SU10

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • Reaction characteristics of 4-methylcatechol 2,3-dioxygenase (4MC230) purified from Pseudomonas putida SU10 with a higher activity toward 4-methylcatechol than catechol or 3-cethylcatechol were studied by altering their physical and chemical properties. The enzyme exhibited a maximum activity at pH 7.5 and approximately 40% at pH 6.0 for 4-methylcatechol hydrolysis. The optimum temperature for the enzyme was around $35^{\circ}C$, since the enzyme was unstable at higher temperature. Acetone(10%) stabilized the 4MC230. The effects of solvent and other chemicals (inactivator or reactivator) for the reactivation of the 4MC230 were also investigated. Silver nitrate and hydrogen peroxid severely deactivated the enzyme and the deactivation by hydrogen peroxide severely deactivated the enzyme and the deactivation by hydrogen peroxide was mainly due to the oxidation of ferrous ion to ferric ion. Some solvents acted as an activator and protector for the enzyme from deactivation by hydrogen peroxide. Ascorbate, cysteine, or ferrous ion reactivated the deactivated enzyme by hydrogen peroxide. The addition of ferrous ion together with a reducing agent fully recovered the enzyme activity and increased its activity abut 2 times.

  • PDF

Some Properties of Polyphenol Oxidase from Apple (Jonathan) and Thermal Stability of the Active Bands (홍옥(紅玉) Polyphenol Oxidase의 일반적(一般的) 성질(性質) 및 활성(活性) Band의 열안정성(熱安定性))

  • Chung, Ki-Taek;Seo, Seung-Kyo;Song, Hyung-Ik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.397-402
    • /
    • 1984
  • As a basic research for inhibition of enzymatic browning of apple wine, polyphenol oxidase (EC 1.10.3.1) from apple (Jonathan) was extracted, partially purified, and some properties of the enzyme and changes o( active bands by heat treatment were investigated. Optimum conditions for the enzyme reaction were pH6.5 and temperature of $30^{\circ}C$, and o-diphenol was the main substrate for the enzyme. Approximately 35% and 15% of initia lpolyphenol oxidase activity remained after heating at $60^{\circ}C$ and $70^{\circ}C$ for 1 hour, respectively. About 0.5mM of the inhibitor such as sodium metabisulfite, cysteine and ascorbic acid was required for effective inhibition of the enzyme reaction. However, EDTA was found to be a very poor inhibitor. Ethanol did not affect the enzyme activity. The number of active bands of polyphenol oxidase from apple(Jonathan) was found to be four, but two bands and one band were observed after heating at $60^{\circ}C$ and $70^{\circ}C$ for 1 hour, respectively, which showed a significant difference in thermal stability among active bands.

  • PDF