Browse > Article

Enhancement of Health Functional Compounds in the Sprouts of Barley (Hordeum vulgare L.) Cultivars by UV-B and Salicylic Acid Treatments  

Kim, Yong-Hyun (Natural Science Research Institute, University of Seoul)
Kim, Seong-Min (Natural Science Research Institute, University of Seoul)
Cheng, Hyo-Cheng (Department of Environmental Horticulture, University of Seoul)
Lee, Young-Woo (Natural Science Research Institute, University of Seoul)
Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul)
Publication Information
Horticultural Science & Technology / v.29, no.1, 2011 , pp. 61-67 More about this Journal
Abstract
Barley (Hordeum vulgare L.) sprouts are a vegetable commonly used as a functional food material due to its high vitamin C concentration and antioxidant activity. In this experiment, we measured the changes in the antioxidant activity of several barley cultivars as well as in the concentrations of related compounds such as ascorbate and glutathione upon treatment with UV-B or salicylic acid (SA). The six barely cultivars were grown in a plant growth chamber (25/$18^{\circ}C$, 14/10 h, 200 ${\mu}mol{\cdot}m^{-1}{\cdot}s^{-1}$, 70% relative humidity) for 10 days. All barely cultivars showed different 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activities, which were increased by UV-B treatment and not by SA treatment. The changes in ascorbate concentrations were correlated with DPPH scavenging activity in both the treatments, suggesting that the antioxidant activity in barley sprouts was mainly dependent on ascorbate concentration. Furthermore, changes in ascorbate concentration showed similar tendencies to changes in free sugar concentration, especially glucose and sucrose, in both treatments. On the other hand, the concentrations of glutathione and cysteine highly increased by SA treatment, representing different tendencies compared to the DPPH scavenging activity and ascorbate concentration. 'Donghanchal' cultivar showed comparatively higher antioxidant activity, both constitutively and inducingly by UV-B treatment, with its higher concentrations of ascorbate and glutathione. These results suggest that barley sprouts could be used as a health-functional vegetable, contributing to the overall supply of antioxidant and sulfur-containing organic compounds.
Keywords
antioxidant; ascorbate; barley; glutathione; vegetable;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Walker, M.A. and B.D. Mckersie. 1993. Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239.   DOI
2 Wang, L.J. and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to $Ca^{2+}$ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170:685-694.   DOI   ScienceOn
3 Wang, S.Y., H.J. Jiao, and M. Faust. 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple. Physiol. Plant 82:231-236.   DOI   ScienceOn
4 Wong, S.P., L.P. Leong, and J.H.W. Koh. 2006. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99:775-783.   DOI   ScienceOn
5 Yun, H.K., Y.C. Kim, K.Y. Kim, T.C. Seo, and J.W. Lee. 2002. Effect of UV-B irradiation on the growth and antioxidant contents of some leaf vegetables. J. Kor. Hort. Sci. 43:170- 172.
6 Zhang, J. and M.B. Kirkham. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132:361-373.   DOI   ScienceOn
7 Navarro, J.M., P. Flores, C. Garrido, and V. Martinez. 2006. Changes in the contents of antioxidant compound in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 96:66-73.   DOI   ScienceOn
8 Pallardo, F.V., J. Markovic, and J. Vina. 2009. Cellular compartmentalization of glutathione. p. 35-45 In: R. Masella and G. Mazza (eds.) Glutathione and sulfur amino acids in human health and disease. Wiley and Sons, Hoboken, New Jersey.
9 Reddy, A.R., K.V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202.   DOI   ScienceOn
10 Rao, M.V., G. Paliyath, D.P. Ormrod, D.P. Murr, and C.B. Watkins. 1997. Influence of salicylic acid on $H_{2}O_{2}$ production, oxidative stress, and $H_{2}O_{2}$-metabolizing enzymes (salicylic acid-mediated oxidative damage requires $H_{2}O_{2}$). Plant Physiol. 115:137-149.   DOI
11 Shanker, A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar, and G. Pathmanabhan. 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiate (L.) R.Wilczek. cv CO 4) roots. Plant Sci. 166:1035-1043.   DOI   ScienceOn
12 Smirnoff, N. and J.E. Pallanca. 1996. Ascorbate metabolism in relation to oxidative stress. Biochemical Soc. Trans. 24:472-478.
13 Srivastava, M.K. and U.N. Dwivedi. 1998. Salicylic acid modulates glutathione metabolism in pea seedlings. J. Plant Physiol. 153:409-414.   DOI   ScienceOn
14 Stoilova, I., A. Krastanov, A. Stoyanova, P. Denev, and S. Gargova. 2007. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 102:764-770.   DOI   ScienceOn
15 Vaidyanathan, H., P. Sivakumar, R. Chakrabarty, and G. Thomas. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci. 165:1411-1418.   DOI   ScienceOn
16 Kim, J.S., I.S. Shim, I.S. Kim, and M.J. Kim. 2010. Change of cysteine, glutathione and ascorbic acid content in chinese cabbage, head lettuce and spinach by the growth stage. Kor. J. Hort. Sci. Technol. 28:186-191.
17 Kim, S.M., Y.H. Kim, and I.S. Shim, 2009.Research on the barley (Hordeum vulgare L.) cultivars for use of functional barley bud. Kor. J. Hort. Sci. Technol. 27(Suppl. І):177 (Abstr.).
18 Kwon, J.K., J.H. Park, J.H. Lee, D.K. Park, Y.H .Choi, and M.A. Cho. 2003b. Physiological changes and antioxidant enzyme activities of fruit vegetable plug transplants Irradiated with different UV-B intensities. J. Kor. Soc. Hort. Sci. 44:464-469.
19 Kocsy, G., P. von-Ballmoos, M. Suter, A. Rüegsegger, U. Galli, G. Szalai, G. Galiba, and C. Brunold. 2000. Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta. 211:528-536.   DOI   ScienceOn
20 Kwon, J.K., J.H. Lee, D.K. Park, and Y.H. Choi. 2003a. Overgrowth retardation and physiological changes in plug-grown fruit vegetable transplants by ultraviolet-B irradiation. Kor. J. Hort. Sci. Technol. 21 (Suppl. I):124 (Abstr.).
21 Linster, C.L. and S.G. Clarke. 2008. L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci. 13:567-573.   DOI   ScienceOn
22 Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.   DOI   ScienceOn
23 Mittova, V., F.L. Theodoulou, G. Kiddle, L. Gomez, M. Volokita, M. Tal, C.H. Foyer, and M. Guy. 2003. Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett. 554:417-421.   DOI   ScienceOn
24 Musil, C.F. 1995. Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performance of dicotyledonous and monocotyledons arid-environment ephemerals. Plant Cell Environ. 18:844-854.   DOI   ScienceOn
25 Foyer, C.H. 1993. Ascorbic acid. P. 31-58 In: R.G. Alscher and J.L. Hess (eds.) Antioxidants in higher plants. CRC Press. Boca Raton. Florida. USA.
26 Foyer, C.H., F.L. Theodoulou, and S. Delrot. 2001. The functions of inter-and intracellular glutathione transport systems in plants. Trends Plant Sci. 6:486-492.   DOI   ScienceOn
27 Foyer, C.H., M. Lelandais, and K.J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant 92:696-717.   DOI   ScienceOn
28 Hayat, S., B. Ali, and A. Ahmad. 2007. Salicylic acid: Biosynthesis, metabolism and physiological role in plants. P. 1-14 In: S. Hayat and A. Ahmad (eds.) Salicylic acid- a plant hormone. Springer, Netherland
29 Freeman, J.L., D. Garcia, D. Kim, A. Hopf, and D.E. Salt. 2005. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 137:1082-1091.   DOI   ScienceOn
30 Ganesan, V. and G. Thomas. 2001. Salicylic acid response in rice: influence of salicylic acid on $H_{2}O_{2}$ accumulation and oxidative stress. Plant Sci. 160:1095-1106.   DOI   ScienceOn
31 Inze, D. and M.V. Montagu. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol. 6:153-l58.   DOI   ScienceOn
32 Kalbin, G., A.B. Ohlsson, T. Berglund, J. Rydström, and A. Strid. 1997. Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur. J. Biochem. 249:465-472.   DOI   ScienceOn
33 Khalil, A.W., A. Zeb, F. Mahmood, S. Tariq, A.B. Khattak, and H. Shah. 2007. Comparison of sprout quality characterisitics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT. Food Sci. Technol. 40:937-945.   DOI   ScienceOn
34 Kim, J.H., D.J. Yu, and H.J. Lee. 2006. Salicylic acid modifies antioxidative system of 'Kyoho' grapevine cultivar as exposed to low temperature. Hort. Environ. Biotechnol. 47:280-287.
35 Bergquist, S.Å.M., U.E. Gertsson, and M.E. Olsson. 2006. Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J. Sci. Food Agr. 86:346-355.   DOI   ScienceOn
36 Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant 77:457-464.   DOI
37 Alscher, R.G. and J.L. Hess. 1993. Antioxidants in higher plants. CRC Press. Boca Raton. Florida. USA.
38 Ananieva, E.A., K.N. Christov, and L.P. Popova. 2004. Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J. Plant Physiol. 161:319-328.   DOI   ScienceOn
39 Bolink, E.M., I. van-Schalkwijk, F. Posthumus, and P.R. van- Hasselt. 2001. Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants. Plant Ecol. 154: 149-156.
40 Costa H., S.M. Gallego, and M.L. Tomaro. 2002. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 162:939-945.   DOI   ScienceOn
41 Ferreyra, R.M., S.Z. Viña, A. Mugridge, and A.R. Chaves. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Scientia Hort. 112:17-32.