• 제목/요약/키워드: cylindrical structure

검색결과 664건 처리시간 0.025초

그림자효과를 이용하여 증착한 구리박막의 구조에 관한 연구 (A Study on the Microstructure of Sputtered Copper Thin Films Deposited by using Shadow Effect)

  • 배창환;이주희;한창석
    • 열처리공학회지
    • /
    • 제22권5호
    • /
    • pp.275-281
    • /
    • 2009
  • The microstructure of copper films prepared by a sputtering apparatus, which was fabricated to enhance the shadowing effect, was investigated by scanning electron microscopy. Black copper films were deposited on copper wires at an Ar pressure of 10 Pa. The black films had an extremely porous structure composed of separated columns. This structure is quite similar to that of black titanium films prepared by cylindrical magnetron sputtering. These results suggest that the porous structure composed of separated columns is easily formed for metal films by enhancing the shadowing effect.

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

격자 지지구조체에 묶여있는 실린더 형 봉의 삽입위치에 따른 진동특성 (Vibration Characteristic of a Cylindrical Rod according to the Mounting Locations on the Grid Support Structure)

  • 이강희;윤경호;송기남;김재용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.515-518
    • /
    • 2006
  • A vibration test for a cylindrical rod inserted on the grid support structure was tested using the sine sweep excitation method with closed loop force control. The effect of the mounting location of a test rod on the vibration characteristics of a rod continuously supported by the full size($16{\times}16$) grid support was identified. An electromagnetic vibration shaker, non-contact displacement sensor and HP/VXI data acquisition device were used and TDAS software was also used as a data sampling and processing tools. The natural frequencies and mode shape of the test rod were consistent with the previous works of a rod vibration test with partial grids($3{\times}3,\;5{\times}5\;and\;7{\times}7$). The frequency characteristics of the rod according to the mounting location were shown clear discrepancies, but mode shapes were nearly same. As the test rod closes to the bottom clamping region of the spacer grid, peak vibration amplitudes of the rod become smaller.

  • PDF

다목적 화물선의 Crane Post설계에 관한연구 (A study on Design of Crane Post for Multi-Purpose Cargo vessel)

  • 전태병;임채환
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.127-136
    • /
    • 1986
  • Recently deck crane of multi purpose cargo vessel (MPCV) is designed to posi¬tion in side instead of in the center line of the upper deck with a view to reduce the transportation cost and shipbuilding cost by shortening the length of ship. In this paper, the crane post was at first designed according to the crane maker’s specification and parent ship and the structure is analysed with Finite Ele¬ment Method. Through the careful reviews on the result of analysis, the final design of crane post was modified. The crane post is designed as a cylindrical in upper part and hexagonal in lower part instead of cylindrical on the whole as before. The connecting part of crane post is designed with the form of mixture of the cylinderical and hexagonal. Since the center of cylindrical and hexagonal section are not on the same line, it is expected to have the stress concentration. So, in order to attenuate the concentrated stress on the connecting part, the upper and lower parts was stiffened by inserting plate to enlarge the area of welding. The structure of deck part includes the tank side floor which is depend on the lower structure of the crane post that would support the force of the crane post by placing with 1.5 frame interval of the vertical plate.

  • PDF

자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구 (A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit)

  • 조형국
    • 한국음향학회지
    • /
    • 제15권6호
    • /
    • pp.47-51
    • /
    • 1996
  • 실린더 운동방정식은 실린더 내에서 발생되는 소음 해석에 매우 중요하다. 그러므로, 지금까지 많은 학자들에 의해 실린더 운동방정식을 유도되었다[1]. 참고문헌[6]에서는, 새로 제안돈 실린더 운동방정식, Junger and Feit의 실린더 운동방정식 그리고 가정해에 의한 선형방정식으로, 실린더가 자유 운동을 할 때, 자유파수를 구하였다. 본 논문에서는 자유파수들의 분산곡선들을 이용하여, 두 실린더운동방정식을 비교하였고, 링주파수와 링확장주파수의 계산으로, 자유파수들의 분산곡선의 물리적인 의미를 부가하였다. 이 결과, 새로 유도된 실린더 운동방정식의 타당함을 보였다. 새로 제안된 실린더 운동 방정식을 이용하면, 산업현장에서, 실린더 내의 고체파에 대한 보다 정확한 분석을 할 수 있을 것으로 사료된다.

  • PDF

2차원 Open Cylindrical Cavity의 전자파 투과 및 산란특성연구 (A Study of EM Wave Penetration and Scattering of Open Cylindrical Cavity)

  • 김영주;조영기
    • 대한전자공학회논문지TC
    • /
    • 제38권11호
    • /
    • pp.55-62
    • /
    • 2001
  • 2차원 open cylindrical cavity의 전자파 투과 및 산란특성에 대해 연구하였다. 이러한 구조는 cavity 및 aperture의 크기에 따라 전파의 투과나 산란특성에 특이한 현상이 나타남에도 불구하고 정확한 분석이 이루어지지 않았다. 본 논문에서는 모멘트법의 확장형인 FMM 기법을 이용하여 비교적 광범위하게 open cavity의 특성을 계산하였다. 계산결과 open cylindrical cavity의 경우 closed cavity의 internal mode에 대응하는 external mode가 존재하고, 이때 공진 및 산란특성은 비공진시와 다른 특성을 나타냄을 확인하였다. 연구결과는 전자파의 차폐 및 RCS 통제분야에 응용할 예정이다.

  • PDF

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

경사단을 갖는 Steel 및 복합재료 원통쉘의 자유진동 특성에 관한 연구 (A Study on Free Vibration of Steel and Composite Cylindrical Shells with an Oblique Angle)

  • 이장원;최영진;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.928-933
    • /
    • 2004
  • The vibration characteristic is a primary design factor. The cylindrical shells are used as a primary components of complex structure. also, The cylindrical shells have oblique angle. In this study, The vibrational characteristics of steel and plain wave GFRP cylindrical shell with an oblique end are given by experimental and finite element method. To be find characteristic of the oblique end, the mass of the cylindrical shell is maintained. Natural frequency and mode shapes of isotropic and plain weave composite shells are obtained by modal test. The results are compared with those of the finite element method. The simply supported boundary conditions with bolts along the circumferential direction of the GFRP shell are well achieved. Also, The clamped boundary conditions is applied to the steel specimen. Those are shown to agree well with the analytical results and finite element analysis results.

  • PDF

Axial buckling response of fiber metal laminate circular cylindrical shells

  • Bidgoli, Ali M. Moniri;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.45-63
    • /
    • 2016
  • Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers. In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

Buckling of axially loaded shell structures made of stainless steel

  • Ozer Zeybek;Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.681-691
    • /
    • 2023
  • Stainless steels are commonly employed in engineering applications since they have superior properties such as low maintenance cost, and high temperature and corrosion resistance. These features allow them to be preferred in cylindrical shell structures as well. The behavior of a cylindrical shell structure made of stainless steel can be quite different from that made of carbon steel, as the material properties differ from each other. This paper deals with buckling behavior of axially loaded cylindrical shells made of stainless-steel. For this purpose, a combined experimental and numerical study was carried out. The experimental study comprised of testing of 18 cylindrical specimens. Following the experimental study, a numerical study was first conducted to validate test results. The comparisons show that finite element models provide good agreement with test results. Then, a numerical parametric study consisting of 450 models was performed to develop more generalized design recommendations for axially compressed cylindrical shell structures made of stainless steel. A simple formula was proposed for the practical design purposes. In other words, buckling strength curve equation is developed for three different fabrication quality.