• 제목/요약/키워드: cyclooxygenase-1

검색결과 1,064건 처리시간 0.03초

Anti-inflammatory Activity of Antimicrobial Peptide Papiliocin 3 Derived from the Swallowtail Butterfly, Papilio xuthus (호랑나비 유래 항균 펩타이드 파필리오신 3의 항염증 활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • 제30권10호
    • /
    • pp.886-895
    • /
    • 2020
  • The development of novel peptide antibiotics with potent antimicrobial activity and anti-inflammatory activity is urgently needed. In a previous work, we performed an in-silico analysis of the Papilio xuthus transcriptome to identify putative antimicrobial peptides and identified several candidates. In this study, we investigated the antibacterial and anti-inflammatory activities of papiliocin 3, which was selected bioinformatically based on its physicochemical properties against bacteria and mouse macrophage Raw264.7 cells. Papiliocin 3 showed antibacterial activities against E. coli and S. aureus without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that papiliocin 3 reduced the expression levels of pro-inflammatory enzymes, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). In addition, we examined whether papiliocin 3 could inhibit the expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) in LPS-induced Raw264.7 cells. We found that papiliocin 3 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling. We also confirmed that papiliocin 3 binds to bacterial cell membranes via a specific interaction with lipopolysaccharides. Collectively, these findings suggest that papiliocin 3 could be a promising molecule for development as a novel peptide antibiotic.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • 제43권1호
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Changes of Arachidonic Acid Metabolites in Silica-Exposed Alveolar Macrophage of Rats (유리규산분진에 폭로된 흰쥐의 폐포대식세포에 있어 아라키돈산 대사산물의 변화)

  • Lim, Young;Yun, Im-Goung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제39권4호
    • /
    • pp.304-309
    • /
    • 1992
  • Background: The alveolar macrophage may metabolize arachidonic acid through cyclooxygenase- and lipoxygenase- catalyzed pathways to produce a variety of metabolites of arachidonic acid. The production of these metabolites of arachidonic acid may enhance the defensive ability of the challenged lung. However, continued stimulation with the consequent production of proinflammtory metabolites of arachidonic acid, may ultimately enhance the disease process by contributing to chronic bronchoconstriction, fibrosis, and the persistent release of toxic oxygen species. Silicosis is an example of a disease process resulting from chronic exposure of the lung to foreign particles. This study was carried out to evaluate the changes of arachidonic acid metabolites from macrophages in experimental silicosis. Methods: We measured $PGE_2$, and $LTB_4$ in cultured macrophages taken from rats by radioimmunoassay at 24 and 48 hours after stimulation by silica dust, natural carbon dust, lipopolysaccharide, calcium ionophore (A23187) and medium (RPMI) as a control. For the experimental silicosis, 50 mg silica in 0.5 ml saline was administered intratracheally into the rat and grown to 20 weeks and measured $PGE_2$, and $LTB_4$ in the cultured macrophages lavaged from that rat. The used stimulants were the same as above. Results: 1) The amount of $PGE_2$ in the cultred macrophages from normal rat was significantly decreased in the group which was stimulated with silica dust for 48 hours compare with control non-stimulated group. 2) In the experimental silicosis group, $PGE_2$, release in cultured macrophages after 48 hours incubation with silica and natural carbon dust tended to be lower than those of non-stimulated group. 3) There were marked changes of $LTB_4$ in the groups of normal rats which were incubated with silica for 24, 48 hours and natural carbon for 48 hours compared with non-stimulated group. 4) In the experimental silicosis group, the release of $LTB_4$ was significantly increased macrophages cultured with silica and natural carbon dust after 24 and 48 hours incubation compared with non-stimulated group. Conclusion: The results of these studies suggest that the in vitro exposure of rat alveolar macrophge to silica and coal dust results in an alteration in alveolar macrophage metabolism of arachidonic acid that may promote an inflammatory reaction in lung tissue.

  • PDF

Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage (LPS로 자극한 RAW264.7 대식세포에서 보리순 에탄올 추출물의 항염증 효과)

  • Kim, Mee-Kyung;Kim, Dae-Yong
    • Food Science and Preservation
    • /
    • 제22권5호
    • /
    • pp.735-743
    • /
    • 2015
  • This study investigated the anti-inflammatory activity of barley leaf extract in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and hairless mice. Pre-treatment with barley leaf extract significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-II (COX-II) in a dose-dependent manner in LPS-stimulated RAW264.7 cells. Barley leaf extract also significantly inhibited the secretion of inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) were strongly suppressed by barley leaf extract in LPS-stimulated cells. In hairless mice, barley extract significantly decreased the pathological phenotypes of contact dermatitis, such as erythema, edema, and scabs. These results indicate that barley leaf extract has an anti-inflammatory effect and therefore a possible role in the treatment of inflammatory diseases or in functional cosmetics.

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis (흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성)

  • Lee, Joon Ha;Baek, Minhee;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Seo, Minchul;Kim, Mi-Ae;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • 제29권11호
    • /
    • pp.1218-1226
    • /
    • 2019
  • The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.

Anti-inflammatory effects of Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium (영지버섯균 발효 꾸지뽕나무 가지 톱밥 추출물의 항염증 활성)

  • Park, Se-Eun;Kim, Myung Kon;Kim, Seung
    • Journal of Mushroom
    • /
    • 제19권3호
    • /
    • pp.225-233
    • /
    • 2021
  • In this study, we evaluated the anti-inflammatory effect of extract from Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium. Fermented Cudrania tricuspidata twig sawdust extracted with 70% ethanol and elucidated the potential signaling pathway in lipopolysaccharide (LPS)-induced RAW264.7 cells. Fermented Cudrania tricuspidata twig sawdust inhibits LPS-stimulated nitric oxide (NO) production without affecting cell viability in a dose-dependent manner and production of LPS-induced pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and prostaglandin2 (PGE2). Fermented Cudrania tricuspidata twig sawdust also suppressed the expression of the pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells. Moreover, Fermented Cudrania tricuspidata twig sawdust significantly attenuated LPS-induced IkappaB (IκB) degradation and suppressed nuclear factor kappa B (NF-κB) nuclear translocation. These results suggest that fermented Cudrania tricuspidata twig sawdust may have great potential for the development of anti-inflammatory agent.

Cytotoxicity of Particulate Matter in Various Human Cells Lines (미세먼지가 다양한 사람 세포주에 미치는 세포 독성)

  • Lee, Ji-Hyeon;Lee, Joo-Yeong;Kim, Mi-Jeong;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • 제29권6호
    • /
    • pp.724-734
    • /
    • 2019
  • The present study investigated the cytotoxicity of particulate matter (PM) derived from car air filter (outdoor PM) and home cleaner filter (indoor PM) in the various human cell lines. Each outdoor and indoor PM were harvested by ethanol extraction method, subsequently sieved with 10 um filter paper, sterilized with autoclave and added to culture media. The half maximal inhibitory concentration ($IC_{50}$) values was significantly (p<0.05) lower in the outdoor PM, compared with indoor PM, and the significantly (p<0.05) higher $IC_{50}$ values were observed in the cancer cell lines (A-549 lung adenocarcinoma and AGS stomach adenocarcinoma), than those of normal MRC-5 fibroblasts and dental papilla tissue derived-mesenchymal stem cells (DSC). After being exposed to $100{\mu}g/ml$ outdoor PM for 7 days, the population doubling time (PDT) was significantly (p<0.05) increased in especially MRC-5 and DSC cell lines, compared with untreated cell lines. Further, the expression of senescence-associated ${\beta}$-galactosidase activity was up-regulated in all the cells exposed to outdoor PM than those of untreated control. Besides, the expression level of inflammation-associated genes, such as cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) was found to be significantly (p<0.05) increased in the outdoor PM-treated cell lines than those of untreated cell lines. Our results showed that PM induces the cytotoxicity via arrest of cell growth, cell damage and inflammation response.

Hepatoprotective Effects of Semisulcospira libertine Hydrolysate on Alcohol-induced Fatty Liver in Mice (알코올성 지방간 유발 마우스에서 다슬기 유래 가수분해물의 간 보호 효과)

  • Song, Eun Jin;Cho, Kyoung Hwan;Choo, Ho Jin;Yang, Eun Young;Jung, Yoon Kyoung;Seo, Min Gyun;Kim, Jong Cheol;Kang, Eun Ju;Ryu, Gi Hyung;Park, Beom Yong;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • 제21권4호
    • /
    • pp.318-325
    • /
    • 2017
  • Alcoholic steatosis is a fundamental metabolic disorder and may precede the onset of more severe forms of alcoholic liver disease. In this study, we isolated enzymatichydrolysate from Semisulcospira libertine by alcalase hydrolysis and investigated the protective effect of Semisulcospira libertine hydrolysate on liver injury induced by alcohol in the mouse model of chronic and binge ethanol feeding (NIAAA). In an in vitro study, the hydrolysate protects HepG2 cells from ethanol toxicity. Liver damage was assessed by histopathological examination, as well as by quantitating activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). After the administration of S. libertina hydrolysate, fat accumulation and infiltration of inflammatory cells in liver tissues were significantly decreased in the NIAAA mouse model. The elevated levels of serum AST, ALT, and ALP activities, along with the lipid contents of a damaged liver, were recovered in experimental mice administrated with S. libertina hydrolysate, suggesting its role in blood enzyme activation and lipid content restoration within damaged liver tissues. Moreover, treatment with S. libertine hydrolysate reduced the expression rate of cyclooxygenase (COX-2), interleukin $(IL)-1{\beta}$, and IL-6, which accelerate inflammation and induces tissue damage. All data showed that S. libertine hydrolysate has a preventive role against alcohol-induced liver damages by improving the activities of blood enzymes and modulating the expression of inflammation factor, suggesting S. libertine hydrolysate could be a commercially potential material for the restoration of hepatotoxicity.

Anti-Inflammatory Effect of Wheat Germ Oil on Lipopolysaccharide-stimulated RAW 264.7 Cells and Mouse Ear Edema (LPS로 유도한 RAW 264.7 세포 및 귀부종 동물 모델에 대한 밀배아유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Bae, Nan-Young;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • 제44권3호
    • /
    • pp.236-245
    • /
    • 2016
  • This study investigated the anti-inflammatory effects of wheat germ oil (WGO) on RAW 264.7 cells. It was shown that WGO had no cytotoxicity against the treated cells or negative effect on their proliferation. WGO suppressed nitric oxide (NO) secretion considerably and had inhibitory effects on the production of LPS-induced NO and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). In particular, the IL-6 and TNF-α inhibition activities were over 90% at 100 μg/ml concentration of the oil. WGO also inhibited the LPS-induced expression of cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-kappa B (NF-κB), and reduced the expression of phosphorylated ERK and JNK. Moreover, the croton-oil-induced edema in mouse ears was reduced by WGO, and no mortalities occurred in mice administered 5,000 mg/kg body weight of WGO over a 2-week observation period. In conclusion, these results provide evidence for the anti-inflammatory effect of WGO that likely occurs via modulation of NF-κB and the JNK/ERK MAPK signaling pathway.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • 제27권11호
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.