Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.11.1218

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis  

Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Baek, Minhee (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Hwa Jeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Sun Young (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Seong Hyun (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.29, no.11, 2019 , pp. 1218-1226 More about this Journal
Abstract
The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.
Keywords
Antimicrobial peptide; antimicrobial activity; anti-inflammatory activity; Protaetia brevitarsis seulensis; RNA sequencing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bhor, V. M., Thomas, C. J., Surolia, N. and Surolia, A. 2005. Polymyxin B: an ode to an old antidote for endotoxic shock. Mol. Biosyst. 1, 213-222.   DOI
2 Brandenburg, K., Andra, J., Garidel, P. and Gutsmann, T. 2011. Peptide-based treatment of sepsis. Appl. Microbiol. Biotechnol. 90, 799-808.   DOI
3 Chung, M. Y., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 23, 664-668.   DOI
4 Gasparini, C. and Feldmann, M. 2012. NF-kB as a target for modulating inflammatory responses. Curr. Pharm. Des. 18, 5735-5745.   DOI
5 Hwang, J. S., Kang, B. R., Kim, S. R., Yun, E. Y., Park, K. H., Jeon, J. P., Suh, H. J., Nam, S. H. and Kim, I. 2008. Molecular characterization of a defensin-like peptide from larvae of a beetle, Protaetia brevitarsis. Int. J. Indust. Entomol. 17, 131-135.
6 Lehrer, R. I., Rosenman, M., Harwig, S. S., Jackson, R. and Eisenhauer, P. 1991. Designer assays for antimicrobial peptides. J. Immunol. Methods 137, 167-173.   DOI
7 Lowenstein, C. J., Dinerman, J. L. and Snyder, S. H. 1994. Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120, 227-237.   DOI
8 Lu, Y. C., Yeh, W. C. and Ohashi, P. S. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151.   DOI
9 Malmsten, M. 2016. Interactions of antimicrobial peptides with bacterial membranes and menbrane components. Curr. Top. Med. Chem. 16, 16-24.   DOI
10 Martin, G. S., Mannino, D. M., Eaton, S. and Moss, M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546-1554.   DOI
11 Qin, H., Wilson, C. A., Lee, S. J., Zhao, X. and Benveniste, E. N. 2005. LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-$1{\alpha}$ in macrophage and microglia. Blood 106, 3114-3122.
12 Ronco, C. 2014. Lipopolysaccharide (LPS) from the cellular wall of Gram-negative bacteria, also known as endotoxin, is a key molecule in the pathogenesis of sepsis and septic shock. Preface. Blood Purif. 37 Suppl 1, 1.   DOI
13 Lee, J., Bang, K., Hwang, S. and Cho, S. 2016. cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe). Mol. Biol. Rep. 43, 371-379.   DOI
14 Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R, Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin-like Peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009, 2009.
15 Karima, R., Matsumoto, S., Higashi, H. and Matsushima, K. 1999. The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today 5, 123-132.   DOI
16 Kumar, P., Kizhakkedathu, J. N. and Straus, S. K. 2018. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8, 4.   DOI
17 Rosenfeld, Y. and Shai, Y. 2006. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim. Biophys. Acta. 1758, 1513-1522.   DOI
18 Shin, S., Kim, J. K., Lee, J. Y., Jung, K. W., Hwang, J. S., Lee, J., Lee, D. G, Kim, I., Shin, S. Y. and Kim, Y. 2009. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J. Pept. Sci. 15, 559-568.   DOI
19 Kwon, E. Y., Yoo, J., Yoon, Y. I., Hwang, J. S., Goo, T. W., Kim, M. A., Choi, Y. C. and Yun, E. Y. 2013. Pre-treatment of the white-spotted flower chafer (Protaetia brevitarsis) as an ingredient for novel foods. J. Kor. Soc. Food Sci. Nutr. 42, 397-402.   DOI
20 Lee, E., Kim, J. K., Shin, S., Jeong, K. W., Lee, J., Lee, D. G., Hwang, J. S. and Kim, Y. 2011. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J. Pept. Sci. 17, 675-682.   DOI
21 Lee. J., Hong, H. J., Kim, J. K., Hwang, J. S., Kim, Y. and Lee, D. G. 2009. A novel antifungal analog peptide derived from protaetiamycine. Mol. Cells 28, 473-477.   DOI
22 Lee, J. and Lee, D. G. 2015. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and Apoptosis. J. Microbiol. Biotechnol. 25, 759-764.   DOI
23 Lee, S. Y., Moon, H. J., Kurata, S., Kurama, T., Natori, S. and Lee, B. L. 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein of larvae of a coleopteran insect, Holotrichia diomphalia. J. Biochem. 115, 82-86.   DOI
24 Yoon, H. S., Lee, C. S., Lee, S. Y., Choi, C. S., Lee, I. H., Yeo, S. M. and Kim, H. R. 2003. Purification and cDNA cloning of inducible antibacterial peptides from Protaetia brevitarsis (Coleoptera). Arch. Insect Biochem. Physiol. 52, 92-103.   DOI
25 Zhang, L. J. and Gallo, R. L. 2016. Antimicrobial peptides. Curr. Biol. 26, R14-R19.   DOI
26 Lee, J., Lee, W., Kim, M. A., Hwang, J. S., Na, M. and Bae, J. S. 2017. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J. Cell. Mol. Med. 21, 1217-1227.   DOI