• Title/Summary/Keyword: cycling stability

Search Result 176, Processing Time 0.024 seconds

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Evaluation of Cytotoxicity to Rat Platelets by Menadione-Glutathione Conjugate and its Stability in Biological Assay System (Menadione의 대사체인 Menadione-Glutathione Conjugate(MEN-SG)가 흰쥐 혈소판에 미치는 세포독성의 평가 및 MEN-SG의 안정성에 관한 연구)

  • Seo, Dong-Chul;Chung, Sun-Hwa;Lee, Joo-Young;Kim, Mee-Jeong;Chung, Jin-Ho
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.295-302
    • /
    • 1995
  • Menadione-ghitathione conjugate (MEN-SG), a metabolite of menadione, is known to be a redoxcycler in rat hepatocyte subcellular fraction. Therefore, it was assumed that MEN-SG could exert cytotoxlclty to ral platelets, another target tissue of menadione. We first synthesized MEN-SG, the identity of which was verified by mass, $^1{H}$-NMR and UV-visible spectra. In addition, the stability of MEN-SG was investigated in biological assay system. MEN-SG was degraded in a time-dependent manner in DMSO which had been used as a vehicle and thus, tris-HCl buffer was used as a vehicle of MEN-SG despite the low solubility in it. Perchloric acid as well as platelets itself did not affect the stability of MEN-SG. Our next attempt was the evaluation of cytotoxicity of MEN-SG in rat platelets. MEN-SG did not induce cytotoxicity to rat platelets measured by two different methods, LDH release and turbidity changes. The extents of oxygen consumption by MEN-SG in intact platelets were significantly lower than those by menadione, though it had been observed that oxygen consumptions by menadione and MENSG were similar in subcellular fractioas of platelets. These results suggest that MEN-SG is not toxic to rat platelets despite its redox cycling capacity and glutathione conjugation reaction of menadione could be regarded as a detoxification process.

  • PDF

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha;Kosta, Shivangi;Rana, Kuldeep
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

Screw Joint Stability under Cyclic Loading of Zirconia Implant Abutments (지르코늄 임플란트 지대주의 나사결합부 안정성에 관한 연구)

  • Lee, Mi-Soon;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.164-173
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of abutment material on screw-loosening before and after cyclic loading. Among the different materials of abutments, zirconia and metal abutment were used. Material and methods: Two types of implant systems: external butt joint(US II, Osstem Implant, Korea) and internal conical joint(GS II, Osstem Implant, Korea) were used. In each type, specimens were divided into two different kinds of abutments: zirconia and metal(n=5). The implant was rigidly held in a special holding to device ensure fixation. Abutment was connected to 30 Ncm with digital torque gauge, and was retightened in 30 Ncm after 10 minutes. The initial removal torque values were measured. The same specimens were tightened in 30 Ncm again and held in the cycling loading simulator(Instron, USA) according to ISO/FPIS 1480. Cycling loading tests were performed at loads 10 to 250 N, for 1 million cycles, at 14 Hz,(by subjecting sinusoidal wave from 10 to 250 N at a frequency of 14 Hz for 1 million cycles,) and then postload removal torque values were evaluated. Results: 1. In all samples, the removal values of abutment screw were lower than tightening torque values(30 Ncm), but the phenomenon of the screw loosening was not observed. 2. In both of the implant systems, initial and postload removal torque of zirconia abutment were significantly higher than those of metal abutment(P<.05). 3. In both of the implant systems, the difference in removal torque ratio between zirconia abutment and metal abutment was not significant(P>.05). 4. In metal abutments, the removal torque ratio of GS II system(internal conical joint system) was lower than that of US II system(external butt joint system)(P<.05). 5. In zirconia abutments, the difference in removal torque ratio between the two implant systems was not significant(P>.05). Conclusion: Zirconia abutment had a good screw joint stability in the condition of one million cycling loading.

The Effect of Visual Bio-feedback Training on Balance and Postural Control in Stroke Patients (시지각 바이오피드백 훈련이 뇌졸중 환자의 균형 및 자세조절에 미치는 영향)

  • Lim, Soo-Jeong;Lee, Jong-Soo;Kim, Na-Ra;Kim, Seong-Sik;Lee, Byoung-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.1
    • /
    • pp.137-148
    • /
    • 2011
  • Objectives : This study was to investigate the visual bio-feedback training for 5 weeks on balance and postural control for patients with stroke. Methods : The 26 subjects were randomly selected from the patients of the E hospital in the S city who met the study conditions. They were divided into a visual bio-feedback training group of 13 patients and a self-resistance exercise group of 13 patients. The visual bio-feedback training group received visual bio-feedback and general physiotherapy for five weeks and the self-resistance exercise group received cycling and general physiotherapy for the same period. The subjects were measured and compared for stability index, weight distribution index, fall down index, functional reach test and timed up and go test before and after the program. Results : The visual bio-feedback training group showed significant changes after the experiment in stability index, weight distribution index, functional reach test and timed up and go test(p<0.05), and the self-resistance exercise group also showed significant differences(p<0.05). The changes between prior to and after the experiment show that the visual bio-feedback training group had more significant effects than the self-resistance exercise group(p<0.05). Conclusions : The visual bio-feedback training for five weeks had effects in the improvement of the balance and posture control of stroke patients. Based on these results, more effective training programs should be developed and propagated.

Comparative Study on Performances of Composite Anodes of SiO, Si and Graphite for Lithium Rechargeable Batteries

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Lee, Duck-Jun;Lee, Jung-Hoon;Jin, Bong-Soo;Moon, Seong-In;Park, Cheol-Wan;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1257-1261
    • /
    • 2010
  • The electrochemical performances of anode composites comprising elemental silicon (Si), silicon monoxide (SiO), and graphite (C) were investigated. The composite devoid of elemental silicon (SiO:C = 1:1) and its carbon coated composite showed reduced capacity degradation with measured values of 606 and 584 mAh/g at the fiftieth cycle. The capacity retention nature when the composites were cycled followed the order of Si:SiO:C = 3:1:4 < Si:SiO:C = 2:2:4 < SiO:C = 1:1 < SiO:C = 1:1 (carbon coated). A comparison of the capacity retention properties for the composites in terms of the silicon content showed that a reduced silicon content increased the stability of the composite electrodes. Even though the carbon-coated composite delivered low capacity during cycling compared to the other composites, its low capacity degradation made the anode a better choice for lithium ion batteries.

Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability

  • Song, Jinju;Yang, Juhyun;Alfaruqi, Muhammad Hilmy;Park, Wangeun;Park, Sohyun;Kim, Sungjin;Jo, Jeonggeun;Kim, Jaekook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.406-410
    • /
    • 2016
  • Carbon-coated sodium iron pyrophosphate ($Na_2FeP_2O_7$) was prepared by a simple and low-cost pyro-synthesis route for further use as the cathode for Na-ion batteries. The X-ray diffraction (XRD) pattern of the sample annealed at $650^{\circ}C$ confirmed the pure triclinic phase of $Na_2FeP_2O_7$. Electron microscopy studies revealed a cross linked plate shape morphology of the $Na_2FeP_2O_7$ sample. When tested for application in Na-ion battery, the $Na_2FeP_2O_7$ cathode showed two redox pairs in the potential window of 2.0-4.0 V. The cathode registered initial discharge and charge capacities of 80.85 and 90 mAh/g, respectively, with good cycling performance.

Electrochemical Characteristics of Carbon-coated LiFePO4 as a Cathode Material for Lithium Ion Secondary Batteries

  • Shin, Ho-Chul;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.168-171
    • /
    • 2005
  • The electrochemical properties of $LiFePO_4$ as a cathode for Li-ion batteries were improved by incorporating conductive carbon into the $LiFePO_4$. X-ray diffraction analysis and SEM observations revealed that the carbon-coated $LiFePO_4$ consisted of fine single crystalline particles, which were smaller than the bare $LiFePO_4$. The electrochemical performance of the carbon-coated $LiFePO_4$ was tested under various conditions. The carbon-coated $LiFePO_4$ showed much better performance in terms of the discharge capacity and cycling stability than the bare $LiFePO_4$. The improved electrochemical performances were found to be attributed to the reduced particle size and enhanced electrical conductivity of the $LiFePO_4$ by the carbon.

The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?

  • Lee, Sang-Heon;Jeong, Yong-Joo;Lim, Si-Hyoun;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The rechargeable Zn-air battery is considered as one of the potential candidates for the next generation secondary batteries due to its many advantages. However, its further applications and commercialization have been limited by the complexity of the reactions on air electrode which are oxygen reduction and evolution reactions (ORR/OER) upon discharging and charging processes, respectively. In the present study, lanthanum was impregnated into a commercial Pt/C gas diffusion electrode, and it clearly verified significantly enhanced cycling stability and reversibility. The results presented in this study show the possibility of repeated charge/discharge processes for Zn-air batteries with a La-loaded air electrode, and they demonstrate the potential as a promising next generation secondary battery.

A Study on Efficiency Improvement by Fine Tuning of Power Plant Control (제어시스템 튜닝에 의한 발전소 효율향상에 관한 연구)

  • Kim, Ho-Yol;Kim, Byoung-Chul;Byun, Seung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1496-1501
    • /
    • 2012
  • A fine tuning on a control system is essential not only for stable operation but also for efficient operation of the power plant. There has been a very few studies on efficiency change by control system tuning. So, it was not clear that if it could be improved or not when the control is stable by fine tuning and how much it could be improved if it works. An accurate algorithm for measurement of the plant efficiency was newly introduced and implemented to measure integrated fuel flow and electricity MW output and to calculate the mean efficiency for given time. As a result, stable operation after fine tuning of control parameters for major controlled variables brought higher efficiency than un-stable operations like a cycling or an oscillation. The plant efficiency has been monitored during various tests and tunings to confirm how much it changes by tuning of the control system on power plant. Now, we can say that the efficiency can be improved in stable operation by fine tuning of the control system.