DOI QR코드

DOI QR Code

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Jin, Bong-Soo (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Doh, Chil-Hoon (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Kim, Hyun-Soo (Battery Research Center, Korea Electrotechnology Research Institute)
  • Received : 2012.05.08
  • Accepted : 2012.06.22
  • Published : 2012.06.30

Abstract

We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Keywords

References

  1. T. Ohzuku, A. Ueda and M. Nagayama, J. Electrochem. Soc., 140, 1862 (1993). https://doi.org/10.1149/1.2220730
  2. C. Delmas, I. Saadoune and A. Rougier, J. Power Sources, 44 592 (1993).
  3. M.R. Palacin, D. Larcher, A. Audemer, N. Sac-Epee, G.G. Amatucci and J.M. Tarascon, J. Electrochem. Soc., 144, 4226 (1997). https://doi.org/10.1149/1.1838171
  4. E. Levi, M.D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider and L. Heider, Solid State Ionics, 126, 97 (1999). https://doi.org/10.1016/S0167-2738(99)00118-6
  5. T. Ohzuku, A. Ueda and M. Kouguchi, J. Electrochem. Soc., 142, 4033 (1995). https://doi.org/10.1149/1.2048458
  6. H. Cao, B. Xia, N. Xu and C. Zhang, J. Alloys Compd., 376, 282 (2004). https://doi.org/10.1016/j.jallcom.2004.01.008
  7. T. Ohzuku, A. Ueda and M. Kouguchi, J. Electrochem. Soc., 142, 4033 (1995). https://doi.org/10.1149/1.2048458
  8. A.S. Anderson and J.O. Thomas, J. Power Sources, 97- 98, 498 (2001).
  9. N. Ravet, M. Gauthier, K. Zaghib, J.B. Goodenough, A. Mauger, F. Gendron and C.M. Julien, J. Chem. Mater., 19, 2595 (2007). https://doi.org/10.1021/cm070485r
  10. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier and K. Striebel, J. Power Sources, 146, 380 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.141
  11. S. Beninati, L. Damen and M. Mastragostino, J. Power Sources, 180, 875 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.066

Cited by

  1. Future generations of cathode materials: an automotive industry perspective vol.3, pp.13, 2015, https://doi.org/10.1039/C5TA00361J