• 제목/요약/키워드: curvature bound

검색결과 41건 처리시간 0.016초

GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS WITH INTEGRAL RICCI CURVATURE BOUND

  • Wu, Bing-Ye
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.841-852
    • /
    • 2019
  • We establish the generalized Myers theorem for Finsler manifolds under integral Ricci curvature bound. More precisely, we show that the forward complete Finsler n-manifold whose part of Ricci curvature less than a positive constant is small in $L^p$-norm (for p > n/2) have bounded diameter and finite fundamental group.

매끄럽지 않게 연결된 두 곡선에 대해 제한된 곡률로 부드럽게 연결할 수 있는 천이 궤적 생성 방법 (A Path-level Smooth Transition Method with Curvature Bound between Non-smoothly Connected Paths)

  • 최윤종;박부견
    • 전자공학회논문지SC
    • /
    • 제45권4호
    • /
    • pp.68-78
    • /
    • 2008
  • 연속적인 경로 사이를 부드러운 곡선으로 잇기 위해서 기존의 로봇 제어기들은 일반적으로 연속적인 경로를 시간 축에서 합성하는 방법을 사용해 왔다. 하지만 이런 방법은 다음과 같은 두 가지 단점을 내재하고 있다. 천이 경로의 형태가 연접하게 생성될 수 없다는 점과 천이하는 동안 속력을 제어할 수 없다는 점이 그것이다. 이러한 문제점들을 극복하기 위해서 본 논문은 매끄럽지 않게 연결된 두 경로들을 부드럽게 잇기 위해 곡률이 제한된 새로운 천이 궤적 생성 방법을 제시하고자 한다. 실험 결과는 기존의 방법들보다 천이 궤적이 더 부드럽게 생성되는 것을 보여주며, 또한 보장된 곡률의 제한 수준은 $0.02{\sim}1$임을 보여준다.

TERNARY UNIVARIATE CURVATURE-PRESERVING SUBDIVISION

  • JEON MYUNGJIN;HAN DONGSOONG;PARK KYEONGSU;CHOI GUNDON
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.235-246
    • /
    • 2005
  • We present an interpolating, univariate subdivision scheme which preserves the discrete curvature and tangent direction at each step of subdivision. Since the polygon have a geometric information of some original(in some sense) curve as a discrete curvature, we can expect that the limit curve has the same curvature at each vertex as the control polygon. We estimate the curvature bound of odd vertices and give an error estimate for restoring a curve from sampled vertices on curves.

TOTAL SCALAR CURVATURE AND EXISTENCE OF STABLE MINIMAL SURFACES

  • Hwang, Seung-Su
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.677-683
    • /
    • 2008
  • On a compact n-dimensional manifold M, it has been conjectured that a critical point metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of volume 1, should be Einstein. The purpose of the present paper is to prove that a 3-dimensional manifold (M,g) is isometric to a standard sphere if ker $s^*_g{{\neq}}0$ and there is a lower Ricci curvature bound. We also study the structure of a compact oriented stable minimal surface in M.

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • 충청수학회지
    • /
    • 제34권4호
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.

평다이를 사용한 편심 압출가공에서의 비유동 영역의 형상과 굽힘 속도 분포에 관한 상계해석 (An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion)

  • 김진훈;진인태
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.177-185
    • /
    • 1998
  • The kinematically admissible veolcity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric lane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal one are determined by the minimization of the plastic work and that the curvature of the extruded products increase with the eccentricity.

  • PDF