SOME ESTIMATES FOR COMPACT HYPERSURFACES IN HYPERBOLIC SPACE

AZAM ETEMAD

ABSTRACT. Let M be a compact hypersurface in hyperbolic space and let A be the area of M and V be the volume of the compact domain bounded by M. In this paper, we find a lower bound for $\frac{A}{V}$ in two cases, M has constant scalar curvature and M has constant mean curvature.

1. Introduction

In this section we review some basic facts that are needed in the next section. Let $i: M \to H^{n+1}$ be an embedding of n-dimensional compact hypersurface M to hyperbolic space H^{n+1} . Since M is compact, it is the boundary of a compact domain N of H^{n+1} , i.e., $M = \partial N$. Let ν be the *interior* unit normal field of M, $\{e_i\}_{i=1}^n$ be an orthonormal frame, and σ the second fundamental form, both with respect to the normal field ν , i.e. $\sigma(e_i, e_j) = - \langle \nu_*(e_i), e_j \rangle$. Let S and $H = \frac{1}{n} \sum_i \sigma(e_i, e_i)$ be the scalar curvature of M and mean curvature of the immersion, respectively.

For a function f defined everywhere on H^{n+1} we use the notations $\overline{\Delta}f$ and $\overline{\nabla}^2 f$ for the Laplacian and Hessian of f, respectively, and if $g = f|_M$, then ∇g and Δg denote the gradient and Laplacian of g in M, respectively.

The important formula in this paper is due to Reily [2] that for use of it, we need to introduce some related notation.

Suppose that B is a symmetric linear operator on an m-dimensional inner product space W. For an integer $r, 0 \le r \le m$, the r-th invariant

Received April 28, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 53C42.

Key words and phrases: scalar curvature, mean curvature, hyperbolic space, Riemannian manifold.

This work supported by Isfahan University of Technology.

of B, $S_r(B)$, is defined by the condition:

$$det (I + \lambda B) = S_0(B) + \lambda S_1(B) + \ldots + \lambda^m S_m(B).$$

The r-th Newton operator associated with B is defined as follows.

$$T_r(B) = S_r(B)I - S_{r-1}(B) \cdot B + \dots + (-1)^r B^r.$$

In this paper we need two cases:

- a) B is the shape operator for the embedding i from M to N, i.e., m = n, then we write K_r and T_r instead of $S_r(B)$ and $T_r(B)$, respectively.
- b) B is the Hessian of a function f on M, i.e. m = n + 1, then we write $S_r(f)$ and $T_r(f)$ instead of $S_r(B)$ and $T_r(B)$, respectively.

It is clear that $K_r=(-1)^n \binom{n}{r} H_r$, where H_r is the r-th mean curvature of M in N and the coefficient $(-1)^n$ follows from the choice of the interior unit normal vector field ν to M in N. Also we have $S_1(f)=\overline{\Delta}f$, where $\overline{\Delta}$ is the Laplacian of f in H^{n+1} and $\frac{1}{n}K_1=-H$.

We have also the Newton inequality as follows (for example, see [2]).

$$(\overline{\Delta}f)^2 = (S_1(f))^2 \ge \frac{2(n+1)}{n} S_2(f)$$

or

(1)
$$\frac{n}{n+1}(S_1(f))^2 \ge 2S_2(f).$$

In the other word by definition of scalar curvature we have :

$$S = 2\sum_{i < j} K(e_i, e_j).$$

Therefore, Gauss equation for immersed hypersurface ${\cal M}^n$ in ${\cal H}^{n+1}$ implies:

(2)
$$S + n(n-1) = n^2 H^2 - |\sigma|^2,$$

and by Schwarz inequality

$$(3) S \le n(n-1)H^2.$$

2. Main results

Let V and A be the volume of N and the area of M, respectively. Let dV and dA be the canonical measures on H^{n+1} and M, respectively.

THEOREM 2.1. Let M^n be an n-dimensional compact hypersurface embedded in (n+1)-dimensional hyperbolic space H^{n+1} . If the scalar curvature S be positive constant, then $(\frac{A}{V})^2 \geq S$.

Proof. Since S > 0, by (3) H is positive everywhere, so we have:

$$(4) \sqrt{S} \le \sqrt{n(n-1)}H,$$

enddocument Integration on M yields

(5)
$$\sqrt{S}A \le \sqrt{n(n-1)} \int_M H dA.$$

Thus,

(6)
$$SA^2 \le n(n-1)(\int_M HdA)^2.$$

Let f be the solution of the Dirichlet problem,

$$\overline{\Delta}f = 1$$
 on N and $q = 0$ on M .

From divergence theorem we have:

(7)
$$V = \int_{N} \overline{\Delta} f dV = -\int_{M} U dA.$$

Now, by equation (14) of [2],

$$egin{aligned} \int_N 2S_2(f)dV &= \int_M \{(\Delta g - UK_1)U - (igtriangledown g, igtriangledown U) - \sigma(igtriangledown g, igtriangledown g)\} dA \ &+ \int_N \mathrm{Ric}(\mathrm{grad}\,f,\,\mathrm{grad}\,f) dV, \end{aligned}$$

where $U=<\operatorname{grad} f,\nu>:M\to R,$ i.e., normal derivative of f on M.

Substituting the condition of f in (8) and using the fact $-K_1 = nH$ imply that:

$$\int_N 2S_2(f)dV = \int_M nU^2HdA + \int_N \mathrm{Ric}(\mathrm{grad}\,f,\,\mathrm{grad}\,f)dV.$$

Thus by (1) we have:

(9)
$$\int_{N} \frac{n}{n+1} (S_1(f))^2 dV \ge \int_{M} nU^2 H dA + \int_{N} \operatorname{Ric}(\operatorname{grad} f, \operatorname{grad} f) dV.$$

Since H^{n+1} is a symmetric space of non compact type, its Ricci curvature and its Ricci tensor are negative everywhere.

So $\int_N \operatorname{Ric} (\operatorname{grad} f, \operatorname{grad} f) dV$ is negative. This fact beside $S_1(f) = \overline{\Delta} f$ and equation (9) yield:

(10)
$$V = \int_{N} (\overline{\Delta}f)^{2} dx_{1} \cdots dx_{n+1} \\ = \int_{N} (S_{1}(f))^{2} dx_{1} \cdots dx_{n+1} \ge (n+1) \int_{M} U^{2} H dA.$$

Thus, we have:

$$\frac{V}{n+1} \geq \int_{M} U^{2} H dA,$$

By Schwarz inequality for U, (5) and (11) we conclude that:

$$\begin{split} \int_{M} U^{2}HdA & \geq \sqrt{\frac{S}{n(n-1)}} \int_{M} U^{2}dA \\ & \geq \frac{\sqrt{S}}{\sqrt{n(n-1)}A} [\int_{M} UdA]^{2} \\ & = \sqrt{\frac{S}{n(n-1)}} \frac{U^{2}}{A^{2}} \,. \end{split}$$

Substitution in (11) gives us:

$$\frac{V}{n+1} \geq \sqrt{\frac{S}{n(n-1)}} \frac{V^2}{A} ,$$

or

$$\frac{A^2}{V^2} \geq \frac{S(n+1)^2}{n(n-1)} \; .$$

Since

$$\frac{(n+1)^2}{n(n-1)} \geq 1$$

thus,

$$(\frac{A}{V})^2 \, \geq \, S \; .$$

THEOREM 2.2. Let M and N be the same as in Theorem 2.1 . If M has positive constant mean curvature H_c , then $\frac{A}{V} \geq nH_c$.

Proof. Let $f: N \to R$ be the solution of the Poisson equation on N, i.e.,

$$\overline{\Delta}f = 1$$
 on N and $f = 0$ on M .

Thus, by the fact Ric < 0 on H^{n+1} in (8) we have,

$$\int_N 2S_2(f)dV \geq \int_M nU^2 H_c = nH_c \int_M U^2 dA.$$

Using (1) in definition of V conclude that:

$$(12) V \geq nH_c \int_M U^2 dA.$$

On the other hand Schwarz inequality implies:

(13)
$$nH_c \int_M U^2 dA \geq \frac{nH_c}{A} (\int_M U dA)^2.$$

Since $U = \frac{\partial f}{\partial \nu}$, by Stoke's theorem,

$$(14) \qquad (\int_{M} U dA)^{2} = (\int_{N} \overline{\Delta} f dx_{1} \cdots dx_{n})^{2} = V^{2}.$$

Therefore, (12), (13) and (14) imply,

$$V \geq \frac{nH_c}{A}V^2,$$

or

$$\frac{A}{V} \geq nH_c.$$

Following example is an application of Theorem 2.2.

EXAMPLE 2.3. Let $i: M^2 \to H^3$ be an isometric immersion from a compact, stable surface M^2 with constant mean curvature $H_0 > 1$ to three dimensional hyperbolic space H^3 . If A be the area of M^2 , by [1] we have, $(H_0^2 - 1)A = 4\pi$. Let N^3 be the compact domain in H^3 that its boundary is M^2 and let V be the volume of N^3 . Now, Theorem 2.2 implies the following upper bound for V.

$$V \leq \frac{4\pi}{2H_0(H_0^2 - 1)} \leq \frac{2\pi}{H_0^2 - 1}.$$

References

- [1] K. R. Frensel, Stable Complete Surfaces with Constant Mean Curvature, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 129–144.
- [2] R. Reily, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), 459-472.
- [3] S. T. Yau, Problem Section, Seminar on Differential Geometry, Ann. of Math. Stud. 102 (1982).

DEPARTMENT OF MATHEMATICS, ISFAHAN UNIVERSITY OF TECHNOLOGY, 84154 ISFAHAN, IRAN.

E-mail: ae110mat@cc.iut.ac.ir