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Abstract

For a smooth transition between consecutive paths, conventional robot controllers usually generate a transition trajectory
by blending consecutive paths in a time coordinate. However, this has two inherent drawbacks: the shape of a transition
path cannot be designed coherently and the speed during transition is uncontrollable. To overcome these problems, this
paper provides a path-level, rather than trajectory-level, smooth transition method with the curvature bound between
non-smoothly connected paths. The experiment results show that the resultant transition trajectory is more smoothly
connected than the conventional methods and the curvature is closely limited to the desired bound within the guaranteed

level (0.02 ~ 1).

Keywords : curvature bound, parametric interpolation, transition path, trajectory blending, smoothly connected paths

1. Introduction

To improve the performance of a robot, it is
preferred to reduce the task cycle without degrading
the quality of the task. Since a general robotic task
consists of a sequence of motions that may not be
smoothly connected, generating a smooth transition
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trajectory has been an important subject.

In conventional manipulators, a tool path is usually
described with a line segment or a circular-arc.
Thus, discontinuities in velocity and acceleration may
generally exist during switching of motions. If no
transition is applied, the switching of consecutive
motions generally entails the jumps in velocity and
acceleration at the switching instant. For a smooth
have been proposed,
One of the
methods is to connect trajectories of consecutive

transition, several methods

which perform in time coordinates.

paths with a smooth polynomial that spans an
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interval, the so-called transition window”. This
method is intuitive and easily implementable but is
very difficult to control the spatial shape of a
fransition  trajectory. In other methodsmﬂ], a
transition trajectory has been generated by blending,
where a velocity profile or a position profile of the
transition trajectory is made by blending the original
ones. With this method, the spatial shape of a
transition trajectory can be controlled to some degree
by changing the parameters of a blending function.
However, since the spatial shape is intricately
involved not only with the blending function but also
with the original paths, it is still difficult to obtain a
delicate shape of a transition path. Moreover, since
blending performed
time-coordinate, an undesired speed change occurs
during the transition period. Thus, these methods are
unacceptable for tasks that require a precise control
of speed, for example, carrying a vessel filled with
some fluid Recently, the “ have
presented a motion planning primitive to be used for
the iterative steering of vision-based autonomous
vehicles by a quintic spline. However, the vehicle
model and the path planning are handled only on the
two-dimensional space, not on the higher-dimensional
space, where the robot systems are usually working.

of trajectories is m a

.
researches®

To overcome these drawbacks, this paper proposes
a new curvature-bounded smooth transition method,
which handles these in the path level, where a
time-law ignored and only the geometric
information is considered. Since a trajectory can be
decomposed into a path and a speed profile, where
the former describes a pure geometric information of
a motion and the latter details how fast a
manipulator moves along the path, it is natural that
imposing geometrical constraints upon a trajectory is
more effectively conducted in the path

1S

level.
Moreover, since acceleration is proportional to the
curvature of a path while the manipulator moves at a
constant speed, a constant speed of a transition
trajectory can be achieved with a bounded
acceleration by independently generating a transition
path and a speed profile once the curvature of the
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transition path is bounded to a limit. Since research
on a speed profile generation has been conducted and
many of useful results are found in the literature -
10], this paper does not address the problem of speed
profile generation but focuses on the generation of a
transition path.

The proposed method generates a quintic spline
transition path whose curvature is nearly bounded to
a desired value, which is performed through the
followings. First, a temporary quintic spline transition
path is generated by computing an appropriate
transition window size and tangential vectors at the
boundary of the window so that the generated path
resembles a circular arc with the desired curvature,
Next, the transition window is adjusted for satisfying
the desired curvature limit, and thus the transition
path is completed by recomputing the coefficient of
the quintic spline with the adjusted transition
window. The simulation results show that the
proposed method generates much smoother transition
trajectory than the conventional blending method
while keeping the desired curvature bound.

The paper is organized as follows. Section [
discusses the preliminaries and the previous works.
Section I explains the new method, curvature-
bounded smooth transition trgjectory, in  details.
Section IV presents some experimental results.
Finally, with
surmmarization.

section V concludes the paper

0. The previous works

1. Preliminaries : Path and trajectory

Recently developed industrial robot controllers
support a variety of parametric interpolation to
directly handle a parametric path without segmenting
a desired path into a number of linear blocks.
Parametric expressions of paths have been well
established and are used in most of modemm CAD
systems for an accurate description of a geometrical
shape. A superior performance of parametric
interpolations is backed up with the report that the

accuracy and efficiency of machining can be
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mproved through parametric interpolatjonmwm.

We explain the difference of a path and a
[14]. A path
denotes the locus of points, which the manipulator

trajectory by quoting their definitions

has to follow in the execution of the assigned motion;
a path is then a pure geometric description of motion.
On the other hand, a trgjectory is a path on which a
time law is specified, for instance in terms of
A
parametric path is a path expressed in a parametric

velocities and/or accelerations at each point.

equation, which may include expressions for
orientations as well as positions. For example, a line

segment form P, to P, can be described in the

following expression.

P(u)= Py+ (P, — Py)u, where u=[0,1]. (1)

Some examples of parametric paths extensively used
in industrial robot systems and CAD systems are
NURBS’s  (Non-Uniform  Rational
B-Splines), and cubic splines.

B-splines,

A trajectory of a manipulator moving along a
given parametric path P(u) € C* can be computed
with the chain—rule. If we denote the position, the
(t) and alt),
respectively, then the trajectory can be expressed as

velocity, and the acceleration as p(t),v

follows:
p(t)=Pult)),
v(t) = P (u(t))ult), 2)
a(t)= P (u(tHu )+ P (u(t))ult),
where
P lue)= 228D pr - o PW),
( ) U (t)
con_du(t) - dPult)
u(t)= )= 7

Using the time-derivatives of the parameter u(¢) in
the previous Workm,

: s, (t)

8= Flam

con sl P lt) P (ule)
U= o YT p wp

9
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then, we have
p(t)=P(u(t¥,,( )
ull
V=0 @
a(t) = s,()T{)+ s> (t)s (t)N(t),

where s, (t) is the speed, (t) is the curvature, T(t)

is unit tangent vector, and N(¢) is unit normal vector.

T(t "(w()/IP (u(t)),

):
N() = A()/14 ()], ©)
where
At) =P (ult)) ~ T(,t)(T(t) « P"(u(t))),
W (t) = [P (u(t) < P’ (u(t))lﬂ
[P (u ()l

Calculating p(t),v(¢t) and a(t) requires the value of
parameter u at a specified time ¢. The relation
between time and parameter can be expressed as an

integral equation with the traveling length L(¢) as

t wlt)
f s,(r)dr= / |’ (w)ldu.
0 (0)

U

follows:

L(t) ©)

Unfortunately, u{t) for the given L(t) can be
numerically computed but not explicitly obtained, for
the general parametric curve P(u) except for special
curves such as straight lines and circular arcs, that
is, the exact computation of arc-length is impossible
The
interpolation  algorithms resolve this
integration of the
parameter or by treatment of the curve as the

to achieve a general parametric curve.
conventional

through real-time numerical

sequence of small blocks with a known length-
to-parameter relation. In our paper, we resolve this
with the (SPD)
method“n

sampled-parametric  interpolation

2. Conventional techniques for a transition
trajectory generation
As shown in Fig.l suppose that a manipulator is
moving along a particular path x; and at time ., it
switches to a second path z,. To ensure a smooth

movement over the two paths without stopping, an
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Fig. 1. Hllustration of a fransition trajectory in one

dimension, The dashed lines indicate original
paths and the solid curve indicates the final
connected curve.

appropriate transition trajectory is required If no
transition is applied, then the switching between
paths at ¢, will generally create a discontinuity in
acceleration and velocity., Several techniques have
been proposed for handling this problem, which can
be classified into two groups. We present a simple
review for a better understanding of our results. The
following convention will be used in this section.

v,=vlt,— 1),

v, = v(ts +7),
_ t—t,+71 @
8= 2r

where v,, v, and s are the velocity of starting and

ending a transition, and the normalized time at the
specified transition trajectory.

2.1. Approaches based on a connecting
polynomial

This approach is to connect the trajectories of the
consecutive paths with a smooth polynomial that
spans an interval t € [t, —7,t, + 7], which is often
called This
determination of an appropriate transition time 27
and formulation of the connecting polynomial, for

a transition window™, mvolves

which quintic polynomials are often used. A simple
way to estimate the necessary transition time is to
divide the magnitude of velocity change by some

(282)
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appropriately chosen reference acceleration a,

vyl

2= Y

a’l‘

If the transition of orientation is also considered,
then one may compute separate transition times for
the translational and rotational components and then
take the maximum. The six coefficients of a quintic
polynomial can be obtained from the six boundary
conditions on the position, the velocity, and the

acceleration at ¢, ~ 7 and t, + 7.

2.2. Approaches based on a blending function
Although  the above  method
implementable, it is very difficult to control the

is  easily
spatial shape of a transition trajectory. Some methods
based on a blending function enable more flexibility

in the shaping of transition trajectories” "

, where
transition trajectories are generated by blending
velocity profiles or position profiles, For a concise
formulation, we use a normalized time coordinate s
rather than ¢ and then the transition occurs during
the interval s € [0,1]. By employing a normalized
blending function f'(s) € [0,1] , the position, the
velocity, and the acceleration profiles are obtained as

follows:
p(s)=p0)+ v,21s + (v, — v,)27f(s),
U(S): Ua+ (Ub—va>.f,(8)a {9)
(5)= (o —v,) 4L L
@ R
If the maximum allowed acceleration is specified,

then the transition time may be determined using the
following equation.

(v, —v,) df (s)
ds

2r= (10)

lalm ax

There are several simple choices available for

blending functions and examples of these are

fs)=s

for cubic

f’(8)=sin2(%S)

for linear blending, £ (s)=— 25>+ 3s*

polynomial blending, and

for cycloidal blending. These
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blending methods will be compared to our proposed
method in section IV(Experimental results). Herein, it
is verified that the proposed method makes a
smoother transition trajectory than any other blending
function methods.

Remark 1: A more sophisticated blending method
is available in [4], where the control of the spatial
shape of a transition trajectory is more flexible.
spatial
shapes cannot be guaranteed because the spatial

However, the coherence of the resultant

shape is intricately involved not only with blending
functions and its parameters but also with the
addition,
since blending of trajectories is performed in a time

crossing situation of the original paths. In

coordinate, an undesired speed change can occur
during transition period.

III. Main results: Path—level smooth

transition

As
conventional methods handle the transition trajectory

explained in the previous section, since
problem in the trajectory level where a time-law is
involved, the undesired change of speed is almost
inevitable and the spatial shape of the transition
hardly Thus, the

conventional methods are not acceptable for the tasks

trajectory  is controllable.
that require precise control of speed, for example,
carrying a vessel filled with some fluid.

This problem can be effectively solved if the
time-law is ignored. If the transition problem is
handled in the path level rather than the trajectory
level, then the loci of transition trajectory can be
more easily shaped to the desirable geometric curve.
In addition, an appropriate speed profile of the
transition trajectory can be generated independently
of a transition path when the curvature of the path
is under a limit.
we assume that the
is dominant and thus the
rotational motion will be trackable once the

Throughout the paper,

translational motion

MOFx A HEE £ 80| ds) MEEH 52 FEHA A2 +

A= Hol HH 4o 4y

translational motion is trackable. Handling of the case
where the rotational motion is dominant, requires
another measure for smoothness of the rotational
path, as well as a curvature bound for that of the
translational path. Therefore, this case
considered in our paper, and will be studied in future

works.

is not

1. Problem formulation

Suppose that a manipulator is required to move
across a pair of non-smoothly connected parametric
paths P,(u) and P,(u) without a speed change,

where the range of parameter v is [0,u] and u is a
constant value. For a smooth transition, one has to
design a smooth transition path to avoid discontinuity
in velocity and acceleration at the switching point
between the two paths. In addition, the shorter length
of the transition path is more suitable because it is
for reducing task cycles of the manipulator.

We denote such a transition path as Q(s) for

s € [0,s] and also denote the parameter of P, (u) at
the beginning point of transition as wu, and the

_ parameter of P,(u) at the ending point of transition

(283)

as u,. Without loss of generality, let us assume that
the manipulator moves at the unit speed s, (¢)=1.
An optimization problem obtained for the
construction of a transition path Q(s) that satisfies
the prescribed constraints.

is

Problem 1: Minimize the arc-length / SIQ' (s)lds
0

Py(t) 2 P(0)

vl .,

Pyu)"
P aw)

Py(us) = Q(0)

Mol 22 Q(s)

llustration of a transiion path @(s), which is
depicted as a blue solid line. The dashed
curves indicate non—-smoothly connected original
paths P,(u), P,(u) and the solid curves

indicate actual paths.
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under the curvature constraint

Q' (s) x Q" (s)l
Q' ()

and the boundary conditions

> ~
—ma‘XOSSSs

(1D

QO = Rw), Q)= A,
Q0= o g ()= )

BT BT (12)
A(Qy 0) = A(Pp ub}‘: A(@E): A(PQ? ue):

12 ()l 12 ()|’
where

P’ (u)
|7 (u)P

P (u)(P'(u) + P’ (u))
1P ()t ’

A{Pu)=

(13)
since, substitution-of (3) into {2) yields

a(t) = A(P,u)
= P (u)

5,(t)*
1P’ (u)?
Sp(t) 2
A A

)

P (u) » P’ (u)

TP () Pl |

(14)

and s,(t)=1, s,(t)=0.

2. The proposed path—level smooth transition
method with the curvature bound
Problem 1 is so complicated that it cannot be
solved analytically because (a) no structure on Q(s)
is given, (b) both the computations for the arc-length
and the maximum curvature of a general parametric
path Q(s) are not analytic, and finally (c) no
analytic formula for the determination of u, and u,
can be found due to the previous reasons. Thus, we
apply a heuristic approach for this problem.
For (a), we suppose Q(s) to be a quintic spline.
This is because it is the simplest polynomial that can
satisfy six of the boundary conditions.

Qs)= As°+ Bs*+ Cs* + Ds* + Es+ F, (15)

where s € [0,s], and s is a constant value.

The decision of w, and u, is a quite complex
problem because it involves the computation of the
arc-length of Q(s). Thus for (b} and (c), it needs to

(284)
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be assumed that the arc-length from the beginning
point of transition, P, (u,), to the crossing point,
P,(u), between P, and P, is the same as the
arc-length from the crossing point, P,(0), to the
ending point of transition, P,(u,). The arc-length is
denoted as A, which will correspond to a half of a
transition window size 7 in a conventional technique.
By minimizing the transition window size 2\ instead

of the arc-length, we can obtain u, and w, while

avoiding a heavy computation for arc-length
calculation.
However, it is stil not easy to solve the

optimization problem of A and the boundary
conditions of Q(s). The proposed method solves
these problems by fitting Q(s) to a circular arc with
the desired curvature x,. The decision procedure
of three with  the

assumptions.

consists steps following

Assumption:

Al. The transition path Q(s) is a quintic spline
defined by (15).

A2. The arc-length from P, (uy) to P, (u) is the

same as the arc-length from 2,(0)

P, (ue).

P,(u) and P,(u) are nearly straight lines

to

and Q(s) can fit into a circular arc of radius
1/k,, in the vicinity of the crossing point.

Stepl: Choose initial v, and u,
In this step, we shall calculate the initial w, and
u, With A, which can be computed as the distance

from the crossing point to the point of contact
between P,{u) and Q(s) as follows, which is

depicted in Fig. 3.

A= R/tan (}—a.rccos( al (o - PL’QD

2 P iy (0) 16)

The initiall w, and u, can be computed using the
algorithm introduced in [17] with X\ obtained by the
above eguation.
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Fig. 3. The smooth transition trajectory Q(s).

Step2 : Find Q(s)

This step determines the parameter range of Q(s)
with the boundary conditions and computes the
coefficients of Q(s). The range of parameter and the
magnitude of the first derivatives at the boundary
points are computed from the chordal length between
the two boundary points with the assumption 3,
which osculate at the boundary points. In Fig. 3, we
can obtain L, as the arc-length of Q(s), which can

be approximated with a Taylor series approximation

as follows:
LA=ﬂ=a€ch—,
K s1n(6’) 17
~ 2, T 4y 31
al|1.0+ 0 +3609 1512006,
where
L.=1Py (uy) = Py (u,)l, (18)
_ 1 _Pl’(“b) * Pz,( )
0= 5(w—arccos( |P1; (ub)||P2/ (U )I ) (19)

and o is an adjustment parameter for Q(s) not to
violate the curvature constraint. Users may choose an
acceptable value of o from [1.0,1.3].

For @(s) under the assumption 3, the parameter
range s is 26, which is simply L, x,/a by (17).
Therefore, we can find Q(s) with the following
boundary conditions, which can be determined as

am—ng()(a=gwx
o Py, a Py(u)
Q@‘ww<w0m AR
Q (0) (f)lvub) Q (5)__ (ngu ))

M M

(285)

since

L

L
A A
Sp(t) — - —

T Lo () =0.

@ (constant),

Step3 : Adjust A

The final step scales A up until the maximum
curvature of Q(s) is up to the desired curvature
bound &, and recalculates the coefficients of Q(s)

by repeating Step? again. As shown in Fig. 5, the

maximum curvature of Q(s) appears in the

neighborhood at the midpoint, Le. [%—

and & is a small value, hence we divide the interval
26 into small
maximum value among the results calculated in the

s
il

intervals, where we choose the

small intervals instead of the entire region s € [0, s]

as

I (s) < (s)l
i@ (s)P

o Q) xQ’ (5)]
Q)P

(21)

where § is a user—defined parameter, which is chosen
as s/10 in our paper.

The curvature of a circle is inversely proportional
to the radius, which is proportional to A in our case
and we introduce a new value \* instead of A to
compensate a non-zero curvature at the boundary of
transition with additionally concerning the curvatures
of P,(u) and P,(u) at the transition boundary,

« A 1 1
A= E Kmax+—2~K(P1,ub)+—2-K(P2,ue) ,
(22)
where K(P,u)= 1P () X P (u) namely, the

P () 7
curvature of P at u. If K, = k,, and both P, (u)

and P,(u) are nearly straight lines in the vicinity of

u, and u,, then A=

*

Consequently, we  calculate uZ and w,

corresponding to 2 using the algorithm in [17] and
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thus we finally obtain the resulting smooth transition
trajectory Q (s) by repeating Step?.

IV; Experimental results

In this section, we demonstrate the performance of
the proposed path-level smooth transition method
with the curvature bound, which is tested on
generating trajectories for a SCARA 600-arm robot.
Three consecutive parametric paths, namely, two
cubic splines and a line, are constructed for these
tests. The control points of two splines are
(Xp, X1, Xy)  at {0,1.5,3.4}
(X, X3, X, X;) at {0,0.63,1.98,3.18}. The line
segment spans from X; to X,. The positions and

parameters and

roll angles of each point are

X, = (200,300,— 50,0),

X, =(210,450,— 50,— 7/2),
X, = (400,440,— 50,— 7),
X; = (380,380,— 50,— 7/2),
X, = (480,290, 50,0),

X, = (400,200, 50,7/2),
X, =(300,280,— 50,7),

which are marked to square boxes in Fig. 4. All the
position vectors are chosen from a planar space for a
clear observation of transition path shapes.

Two experiments have been performed to verity
the generation of the curvature-bounded smooth
transition trajectory and to compare conventional and
proposed methods.

1. The curvature—bounded smooth transition
trajectory

In the first experiment, the proposed method is
apphied under several different situations of the
desired k= 1.0,0.1,0.05,0.033 and
0.02, where the adjustment parameter o is set to
1.05 in all these cases. The parameters for a speed
profile are V=100mm/s, A= D=1000mm/s"
and J= 10000mm/s?, where V,A,D and J denote

curvature
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Fig. 4. Spatial loci of the trajectories according to
curvature bounds.
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Fig. 5. Curvature fluctuation along the trajectories. The

color {not solid block! lines depict the curvature
variation in the transition paths.

a speed limit, an acceleration limit, a deceleration
limit and a jerk limit, respectively. The spatial loci
depicted in Fig. 4 shows how smoothly a transition
shape can be adjusted. Also, the curvature fluctuation
depicted Fig. 5 describes
curvature-bounded  trajectory

in how well a
can bhe generated
according to x,, where in Fig. 5 the case of k3, =1
is omitted, but its curvature still bounds to &,
Unfortunately, in all conditions, the above results
are not always satisfied. Herein, we remark that the
guaranteed bound of curvature for the experimenting
systemn (SCARA) is 0.02 ~ 1.0. If k,, is larger than

1.0, then the interval of transition becomes very
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short and the SCARA robot hardly runs along the
resulting trajectory. If it is smaller than 0.02, then
the smooth trajectory can be made but the shape of
the resultant trajectory becomes far apart from the
origin circle of our proposed algorithm, i.e. when the
aésumption in our paper is broken, the bound of
curvature is not guaranteed. This comes from the
fact that the system performance is associated with
the dynamics and the control of the system.

2. The curvature—bounded smooth transition
trajectory
In the second experiment, the proposed method is

compared to two conventional transition methods

“hinear

— = - polynomial |
praposed

peaxis {mmmy}

linear (rad/s)

polynomial

propased

time (s}

8 7. MIHA] 2HHE HEsl0f g2 23 1 (AFEL A
%) of £z =zale
Fig. 7. Speed profiles at link 1 (SCARA A arm) for

three methods. Solid and dotted lines represent
the reference and the actual speed, respectively.

(287)
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(t linear and third order polynomial blending
method) ® under the condition (V= 100mm/s),
where the adjustment parameter o and the desired
curvature x,, are set to 1.05 and 0.05.

Fig. 6, 7 and 8 depict the actual cartesian
trajectories, and speed profiles at link 1 and link 2 for
three methods, respectively, while tables 1 and 2
summarizes the statistics of the results of each links.
As shown in the figures, the proposed method
generates smoother transition trajectories than the
linear and the third polynomial methods and thus the
SCARA robot can follow the reference trajectory
along the transition very well.

- transition’

linear {rad/s)

polynomial
3

o

g

3]

proposed
o

time (s)

O 8 MU wHE HEsio]l g2 23 2 (2712t B
=) o £ =z ol

Fig. 8. Speed profiles at link 1 (SCARA B am) for
three methods. Solid and dotted lines represent
the reference and the actual speed, respectively.

1, 2312 (2712t AB &) of tisiM MJIx] &
Holl ot = &t=x 3 AN S gtz
ozl g» (HZHF 100mm/s)

Table 1. The comparison of the performance for three
methods at each link with the speed limit
(100mm/s).

o three speed error

method peak rms
(rad/s) (rad/s)

link 1 linear. 5.1503 8.9430
(A arm) polynomial 6.4848 8.4654
proposed 1.2219 4.0480
link 2 linear. 40.3669 459076
(B arm) polynomial 10.6638 21.1175
proposed 3.269 13.8060
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| g
24 ztel

E 2 2312 (Aa72} AB &) off oisfiA M2Ix
Holl chst ¢x &= #tof AFH ¢X
o] 8| (HEH B 100mm/s)

Table 2. The comparison of the performance for three
methods at each link with the speed limit
(100mm/ s).

three position error
link Dpeak

method ms
(rad/s) (rad/s)
ik 1 linear' 04217 09416
polynomial 0.3624 0.9900

(A arm)
proposed 0.0530 0.1455
ik 2 Iinear' 24816 45148
polynomial 0.8162 2.4968

(B arm)
proposed 0.0706 0.3014

Remark 2: In {3], there are three blending methods
¢ linear, third order polynomial and cycloidal. Since
the performance of cycloidal method is nearly the
same as that of the third order polynomial, we only
compare the proposed method to the linear and the
third order polynomial.

The experiments that the
trajectories are successfully generated and thus
curvature is nearly bounded to a desired limit within
the guaranteed bound. Moreover, trajectories are
much more smoothly connected than the other
methods. Therefore, the proposed method is expected
to play a suitable safety role in motion execution of

consecutive overall parametric paths.

show transition

V. Conclusions
So far, we have considered the ftrajectory
generation problem for smooth transition between
non-smoothly connected parametric paths. Since
conventional methods generate a transition trajectory
in a time-coordinate, they were accompanied by two
fundamental drawbacks: a slowdown of speed during
shapes of
resultant transition trajectories. To overcome these
drawbacks, we presented a new path-level, rather

than ftrajectory-level, transition method with the

transition and incoherent geometric
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curvature bound. The experiments showed that the

proposed method made much more smoothly
connected trajectory than the other methods, where
the curvature was closely bounded to a desired limit
within the guaranteed bound. Therefore, it

expected that the proposed method can provide an

is

efficient tool for fast execution of consecutive

motions.
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