• Title/Summary/Keyword: curriculum knowledge for teaching mathematics

Search Result 107, Processing Time 0.019 seconds

A Study on the 2nd Grade Multiplication Units in 2015 revised Elementary Mathematics Textbooks (2015 개정 초등수학 교과서 2학년 곱셈 단원 분석)

  • Kim, Sung Joon
    • East Asian mathematical journal
    • /
    • v.33 no.4
    • /
    • pp.353-380
    • /
    • 2017
  • The purpose of this study is to analyze the multiplication units in the elementary school mathematics. In the 2015 revised curriculum, students learn multiplication in $2^{nd}$ grade. The multiplication units is divided into two: multiplication and multiplication facts. In these two units, we mainly analyze situations involving multiplication, models for teaching multiplication, and multiplication strategies for teaching multiplication facts in relation to Subject Matter Knowledge. We called these contents Multiplication Matter Knowledge. We examined the precedent study with regard to multiplication at the elementary mathematics. As results, we prepared an analysis framework for this study. This study was conducted according to qualitative research methods, expecially 'qualitative contents analysis'. The contents here refer to Multiplication Matter Knowledge that can be found in the elementary mathematics textbooks and working books etc. As results of analysis, We can confirm that various multiplication situations and multiplication models are presented in the textbooks. And it has been examined that various multiplication properties are presented in the textbook according to the multiplication strategy levels. We insist elementary school teachers should be aware of these Multiplication Matter Knowledge. This study aims to provide elementary school teachers with basic data in these contexts.

Development of Teaching-Learning Model and Instructional Process Based on the Viewpoint of Constructivism (구성주의 관점에 의한 수학 교수-학습 모델의 설정과 수업 전개)

  • Kim Seon-Yu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.3 no.1
    • /
    • pp.75-92
    • /
    • 1999
  • Many educators say that one of the key theory which is widely accepted teaching-learning process in the 7th mathematics curriculum is constructivism. They believe constructivism is very powerful as a background theory in teaching-learning mathematics and in this point of view, each student can construct knowledge by himself in the inner world. Therefore, the aspect of teaching-learning methods in the 7th mathematics curriculum focused on inquiry learning, self-directed learning, cooperative learning. Through this methods, the 7th mathematics text also composed of ease, interesting and dynamic activity oriented subjects. And constructive teaching-learning methods in mathematics is implemented variously by those whom attracted in constructivism. Thus, the purpose of this study is to build up a model that is required to systematize teaching-learning process in mathematics as a guideline for teachers. Another purpose of this study is to make clear that the presented model is appropriate process for teaching-learning in mathematics.

  • PDF

Computer Programming Curriculum and Teaching Method in Connection with Mathematics Education System in the Elementary and Secondary Schools (초.중등학교에서 수학교육체계와 연계된 컴퓨터 프로그래밍 교육과정과 교수방법)

  • Park, Young-Mi;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.116-127
    • /
    • 2008
  • In the $7^{th}$ education curriculum, computer education curriculum in the elementary and secondary schools is composited into the contents for the use of computers so that there are some limitations in teaching students the abilities for solving various problems of several areas using computers. Recently, the research has done to change the computer education curriculum for enhancing creativity and problem solving ability required by the future education. The contents of the main subject for enhancing them is of computer programming, however, there was not enough research on systematic programming education curriculum for leading to motivating learners and enhanced knowledge transfer to those learners. In this paper, we analysis the contents mathematics education curriculum with consecutive contents and in tight connection with computer education and then extract its programming related elements. Based on those, we propose a programming education curriculum with which we can teach systematically computer programing according to continual and systematic guidance in the elementary and secondary schools. And we develop a teaching model and learning guidance for teaching students programming methods with the computer programming education curriculum proposed in this paper.

Interdisciplinary Knowledge for Teaching: A Model for Epistemic Support in Elementary Classrooms

  • Lilly, Sarah;Chiu, Jennifer L.;McElhaney, Kevin W.
    • Research in Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.137-173
    • /
    • 2021
  • Research and national standards, such as the Next Generation Science Standards (NGSS) in the United States, promote the development and implementation of K-12 interdisciplinary curricula integrating the disciplines of science, technology, engineering, mathematics, and computer science (STEM+CS). However, little research has explored how teachers provide epistemic support in interdisciplinary contexts or the factors that inform teachers' epistemic support in STEM+CS activities. The goal of this paper is to articulate how interdisciplinary instruction complicates epistemic knowledge and resources needed for teachers' instructional decision-making. Toward these ends, this paper builds upon existing models of teachers' instructional decision-making in individual STEM+CS disciplines to highlight specific challenges and opportunities of interdisciplinary approaches on classroom epistemic supports. First, we offer considerations as to how teachers can provide epistemic support for students to engage in disciplinary practices across mathematics, science, engineering, and computer science. We then support these considerations using examples from our studies in elementary classrooms using integrated STEM+CS curriculum materials. We focus on an elementary school context, as elementary teachers necessarily integrate disciplines as part of their teaching practice when enacting NGSS-aligned curricula. Further, we argue that as STEM+CS interdisciplinary curricula in the form of NGSS-aligned, project-based units become more prevalent in elementary settings, careful attention and support needs to be given to help teachers not only engage their students in disciplinary practices across STEM+CS disciplines, but also to understand why and how these disciplinary practices should be used. Implications include recommendations for the design of professional learning experiences and curriculum materials.

A Study on the Development of Pedagogical Content Knowledge on Fraction in the Elementary School Mathematics (초등수학에서 분수에 관한 교수학적 내용 지식 개발 연구)

  • Lee, Dae-Hyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2007
  • This study is aimed at development of pedagogical content knowledge on fraction in the elementary school mathematics. Elementary students regard fraction as the difficult topic in school mathematics. Furthermore, fraction is the fundamentally important concept in studying mathematics. So it is important to develop the pedagogical content knowledge on fraction. The reason of attention to the pedagogical content knowledge is that improving the quality of teaching is the central focus of a high quality mathematics education. Shulman suggested that various knowledges are required for teacher to improve their classes. Of course, pedagogical content knowledge is the most valuable in teaching mathematics. Pedagogical content knowledge is related to the promotion of students' understanding about the learning. Pedagogical content knowledges are categorized by five factors in this study. These are understanding about curriculum, understanding about students and students' knowledge, understanding about teachers and teachers' knowledge, understanding about the methods, contents, and management of class, and understanding about methods of assessments. I develop the pedagogical content knowledge on fraction according to the these categories. I concentrate on the two types of pedagogical content knowledges in developing. That is, I present knowledges which teachers have to know for teaching fraction effectively and materials which teachers can use during the teaching fraction. Pedagogical content knowledges guarantee teachers as the professionalists. Teachers should not teach only content knowledges but teach various knowledges including the meta-knowledges which have relation to fraction.

  • PDF

A Survey on the Comprehension of Basic Knowledge of Mathematics of $6^{th}$ Graders in Elementary School By Essay Test (서술형 평가를 통한 초등학교 6학년 학생들의 수학과 기본 지식 이해에 관한 실태조사)

  • Park, Gum-Ran;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.47 no.2
    • /
    • pp.181-195
    • /
    • 2008
  • The purpose of this study was to investigate the understanding of basic knowledge of mathematics for $6^{th}$ grade students in elementary school by an essay test and provide instructional suggestions for teachers. A total of 132 students from 6 classes in 3 elementary schools were tested and analyzed in terms of the characteristics of correct answers and types of incorrect answers. The results showed that students had poor understanding of basic conceptual concepts and principles throughout six content areas of school mathematics curriculum, despite their good performance on mathematical skills. This study included implications to teaching and learning for each of the content areas.

  • PDF

Students and Teachers′Perceptions on the Goals of Mathematics Education -A Foundational Research for the Development of Mathematics Curriculum Model for a Creative Knowledge-based Society- (창조적 지식기만사회의 수학교육과정 개발을 위한 기초조사연구 -수학교육목표에 대한 교사.학생의 인식-)

  • 노선숙;김민경;유현주;차인숙
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.161-177
    • /
    • 2001
  • This study is to investigate what students want to learn and what mathematics teachers should teach in their classrooms. 1314 students and 527 mathematics teachers were randomly selected to administer the questionnaire. The result shows that their is a considerable mismatch between students'learning desires and teachers'teaching practices in classrooms. What students want to learn is creative knowledge; however, what they learn in the classroom is ‘imitative’ knowledge. This study suggests that the overall educational goal of mathematics education in Korea should emphasize (1) learning to communicate mathematically, (2) loaming to reason mathematically, (3) becoming confident in pupils'own ability, (4) learning to$.$value mathematics, and (5) becoming mathematical problem solvers.

  • PDF

Directions for Future Research for Introducing Computer Technology into Mathematics Eduction (컴퓨터공학의 도입을 위한 수학교육연구의 방향)

  • 조완영;권성룡
    • The Mathematical Education
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2000
  • Although computer technology has a great potential for improving mathematics learning practice, it rarely used in mathematics classroom. The purpose of this study is to suggest the future direction for research in mathematics computer technology. First, there has to be a research on mathematics curriculum that take computer technology into account. Second, research on teaching sequence for certain content area is needed. Because computer technology would change the order of teaching sequence. Third, how students would learn with computer technology? how do they acquire knowledge and make sense of it? Fourth, how could we assess the learning with computer technology? Most of all, because teachers play a key role to succeed in educational reform, they have to be familiar with computer technology and software to introduce it into mathematics learning and to use it properly.

  • PDF

Mathematical Knowledge Construction in Computer Based Learing

  • Lee, Joong-Kwoen
    • Research in Mathematical Education
    • /
    • v.5 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • Using computer technology in teaching school mathematics creates new instructional environments. The emphases on the use of computer technology in the classrooms and in particular the use of computer-based exploration as a context of mathematics instruction have been reflected in the recommendation of the NCTM (Curriculum and Evaluation Standards for School Mathematics, 1989). Although the power of using computer technology in the exploration of mathematical problems has been recognized and stressed by many educators, we do not have many research studies on mathematics in computer-based explorations. Especially research has failed to clarify how computer technology can contribute to the construction of procedural and conceptual knowledge of mathematics. Up to now most researches on procedural and conceptual knowledge in computer environments have only focused on classifying programming languages which program language has more random access and rich interrelationship characteristic in relation to conceptual knowledge in humans, and which computer language has more characteristic flavor of procedural knowledge. How computer-based explorations affect the knowledge construction of mathematics, therefore, emerges as an issue of research on teacher education program for theoretical framework. This situation leads to do research on the effectiveness of using computer explorations in pre-service teacher education in terms of procedural and conceptual knowledge construction.

  • PDF

Inductive Analysis Approach on Middle Grade Mathematics Pre-Service Teachers' Teaching Philosophies (중등 예비 수학 교사의 교육철학에 대한 귀납적 분석)

  • Han, Sunyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.599-615
    • /
    • 2015
  • Teachers' philosophies have not been emphasized enough in the current teacher education curriculum even though teacher's philosophy palys a critical role in schools and classrooms. The examination on pre-service teachers' teaching philosophies is necessary to improve teacher education curriculum so that teaching philosophies are often discussed in the courses of 'pedagogical content knowledge' as well as 'general education.' Therefore, the current study investigated 44 pre-service teachers' teaching philosophies, their sub domains, and relationships among the sub domains. The previous studies regarding mathematics teacher's teaching philosophy were more about 'teacher's belief' and employed deductive inference approach using surveys or questionnaires. These studies commonly pointed out that there were three major domains of 'belief on mathematics itself,' 'belief on teaching mathematics,' and 'belief on learning mathematics.' As these three domains of teacher's philosophy has been strengthened, there were very few studies examining the other potential domains of teacher's teaching philosophy. According to the findings of the present study, which employed inductive inference approach and pre-service teachers' free essay writing assignment, 'belief on teacher's role in mathematics classroom,' 'belief on the purpose of mathematics education,' and 'motivation to be a mathematics teacher' were additionally illuminated as sub domains of teacher's teaching philosophy. Moreover, the interrelationship among the sub-areas of teacher's teaching philosophy was disclosed. Specifically, 'belief on the purpose of mathematics education' and 'motivation to be a mathematics teacher' influenced the other sub domains. This implies that the relationships among the sub domains of teacher's teaching philosophy were more likely to be causal and vertical relationships rather than independent and parallel relationships. Finally, the findings from the current study provide implications indicating how pre-service teachers' teaching philosophies might be established in mathematics education courses for future research and education.