• Title/Summary/Keyword: current-voltage (I-V)

Search Result 950, Processing Time 0.028 seconds

Analysis of I-V Characteristics in the Multi-channel Superconducting Vortex Flow Transistor (다채널 고온 초전도 볼텍스 유동 트랜지스터의 I-V 특성 해석)

  • 고석철;강형곤;임성훈;최효상;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.931-937
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a computer program.

Current-to-Voltage Converter Using Current-Mode Multiple Reset and its Application to Photometric Sensors

  • Park, Jae-Hyoun;Yoon, Hyung-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Using a current-mode multiple reset, a current-to-voltage(I-V) converter with a wide dynamic range was produced. The converter consists of a trans-impedance amplifier(TIA), an analog-to-digital converter(ADC), and an N-bit counter. The digital output of the I-V converter is composed of higher N bits and lower bits, obtained from the N-bit counter and the ADC, respectively. For an input current that has departed from the linear region of the TIA, the counter increases its digital output, this determines a reset current which is subtracted from the input current of the I-V converter. This current-mode reset is repeated until the input current of the TIA lies in the linear region. This I-V converter is realized using 0.35 ${\mu}m$ LSI technology. It is shown that the proposed I-V converter can increase the maximum input current by a factor of $2^N$ and widen the dynamic range by $6^N$. Additionally, the I-V converter is successfully applied to a photometric sensor.

An Experiment and Analysis for Standardize Measurement on CCFL (냉음극 형광램프의 표준화 계측을 위한 실험과 분석)

  • Jin, Dong-Jun;Jeong, Jong-Mun;Jeong, Hee-Suk;Kim, Jin-Shon;Lee, Min-Kyu;Kim, Jung-Hyun;Koo, Je-Huan;Gwon, Gi-Cheong;Kang, June-Gill;Choi, Eun-Ha;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.331-340
    • /
    • 2008
  • A method of measuring the current and voltage is suggested in the circuit of cold cathode fluorescent lamps (CCFLs) which are driven at a high frequency of $50{\sim}100\;kHz$ and a high voltage of several kV. It is difficult to measure the current and voltage in the lamp circuit, because the impedance of the probe at high voltage side causes the leakage current and the variation of luminance. According to the analysis of equivalence circuit with the probe impedance and leakage current, the proper measuring method is to adjust the input DC voltage and to keep the specific luminance when the probe is installed at a high voltage circuit. The lamp current is detected with a current probe or a high frequency current meter at the ground side and the voltage is measured with a high voltage probe at the high voltage side of lamp. The lamp voltage($V_C$) is measured between the ballast capacitor and the lamp electrode, and the output voltage($V_I$) of inverter is measured between inverter output and ballast capacitor. As the phases of lamp voltage($V_C$) and current ($I_G$) are nearly the same values, the real power of lamp is the product of the lamp voltage($V_C$) by the lamp current($I_G$). The measured value of the phase difference between inverter output voltage($V_I$) and lamp current($I_G$) is appreciably deviated from the calculated value at $cos{\theta}=V_C/V_I$.

Electrical and Photoluminescence Characteristics of Nanocrystalline Silicon-Oxygen Superlattice for Silicon on Insulator Application

  • Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.258-261
    • /
    • 2002
  • Electrical forming dependent current-voltage (I-V) and numerically derived differential conductance(dI/dV) characteristics have been presented in the multi-layer nano-crystalline silicon/oxygen (no-Si/O) superlattice. Distinct staircase-like features, indicating the presence of resonant tunnel barriers, are clearly observed in the dc I-V characteristics. Also, all samples showed a continuous change in current and zero conductivity around OV corresponding to the Coulomb blockade in the calculated dI/dV-V curve. Also, Ra-man scattering measurement showed the presence of a nano-crystalline Si structure. This result becomes a step in the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high speed and low power silicon MOSFET devices of the future.

Electrical Behaviors of ZnO Elements under Combined Direct and Alternating Voltages

  • Yang, Soon-Man;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.111-117
    • /
    • 2009
  • This paper presents the characteristics of leakage currents flowing through zinc oxide (ZnO) surge arrester elements under the combined direct-current (DC) and 60 Hz alternating-current (AC) voltages. The current-voltage characteristic curves (I-V curves) of the commercial ZnO surge arrester elements were obtained as a function of the voltage ratio a. At constant peak value of the combined DC and AC voltage, the resistive leakage current of the ZnO blocks was significantly increased as the voltage ratio $\alpha$ increased. The I-V curves under the combined DC and AC voltages were placed between the pure DC and AC characteristics, and the cross-over phenomenon in both the I-V curves and R-V curves was observed at the low current region. The ZnO power dissipation for DC voltages was less than that for AC voltage in the pre-breakdown region and reversed at higher voltages.

Current-Voltage Characteristics with a direction of Voltage in Organic Light-Emitting Diodes (유기 전기발광 소자에서 인가전압 방향에 따른 전류-전압 특성)

  • Kim, Sang-Keol;Chung, Dong-Hoe;Chung, Taek-Gyun;Lee, Ho-Sik;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.130-132
    • /
    • 2001
  • We have investigated current-voltage (I-V) characteristics of organic light-emitting diodes based on $TPD/Alq_3$ organics depending on the application of forward-reverse bias voltage. Luminance-voltage characteristics and luminous efficiency were measured at the same time when the I-V characteristics were measured. We have observed that the I-V characteristics shows a current mxima at low voltage, which is possibly not related to the emission from $Alq_3$.

  • PDF

Study on the Temperature Dependence of Schottky Barrier Height (Schottdy Barrier Height의 온도의존성에 관한 연구)

  • Sim, Seong-Yeop;Lee, Dong-Geon;Kim, Dong-Ryeol;Kim, In-Su;Kim, Mal-Mun;Bae, In-Ho;Han, Byeong-Guk;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.1020-1025
    • /
    • 1995
  • The Schottky barrier hieght(SBH) of Au/n-Si(100) were investigated by current-voltage(I-V) and capacitance voltage(C-V) measurement within a temperature range of l00K∼300K. The values of SBH at room temperature obtained from these two measurements were (0.79${\pm}$0.02)eV. The SBH obtained from the C-V measurement was temperature independent, while that obtained from the I-V measurement decreased linearly with decreasing temperature. This indicates that the Schottky diode has deviated from the thermionic emission theory at low-temperature, Thus, other current transport processes were considered and the contribution of recombination current was dominant at low temperature. We found that it leads to a lower SBH value. Thus, the conflicating results between C-V and I-V measurement were explained, C-V measurement is believed to yield mare reliable SBH values in present study since it is not affected by the current transport uncertainties.

  • PDF

Current-Voltage Characteristics with a direction of Voyage in Organic Light-Emitting Diodes (유기 전기발광 소자에서 인가전압 방향에 따른 전류-전압 특성)

  • 김상걸;정동회;정택균;이호식;김태완;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.130-132
    • /
    • 2001
  • We have investigated current-voltage(I-V) characteristics of organic light-emitting diodes based on TPD/Alq$_3$ organics depending on the application of forward-reverse bias voltage. Luminance-voltage characteristics and luminous efficiency were measured at the same time when the I-V characteristics were measured. We have observed that the I-V characteristics shows a current mxima at low voltage, which is possibly not related to the emission from Alq$_3$.

  • PDF

Current and voltage characteristics of inverted staggered type amorphous silicon thin film transistor by chemical vapour deposition (CVD증착에 의한 인버티드 스태거형 TFT의 전압 전류 특성)

  • 이우선;박진성;이종국
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1008-1012
    • /
    • 1996
  • I-V, C-V characteristics of inverted staggered type hydrogenerated amorphous silicon thin film transistor(a-Si:H TFT) was studied and experimentally verified. The results show that the log-log plot of drain current increased by voltage increase. The saturated drain current of DC output characteristics increased at a fixed gate voltage. According to the increase of gate voltage, activation energy of electron and the increasing width of Id at high voltage were decreased. Id saturation current saturated at high Vd over 4.5V, Vg-ld hysteresis characteristic curves occurred between -15V and 15V of Vg. Hysteresis current decreased at low voltage of -15V and increased at high voltage of 15V.

  • PDF

Electrical Properties of 18[kV] ZnO Surge Arrester Stressed by the Mixed DC and 60[Hz] AC Voltages (직류+60[Hz]교류 중첩전압에 대한 18[kV] ZnO 피뢰기의 전기적 특성)

  • Lee, Su-Bong;Lee, Seung-Ju;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.66-72
    • /
    • 2007
  • This paper describes the characteristics of power loss and leakage currents flowing through new and used 18[kV] zinc oxide(ZnO) surge arrester under the mixed DC and AC voltages. The mixed DC and AC voltage generator of 50[kV] peak was designed and fabricated. The I-V curves of ZnO surge arrester were measured as a function of the voltage ratio K. The I-V curves under the mixed DC and AC voltages lay between the pure DC and AC characteristics, and the cross-over phenomenon in both I-V curves and R-V curves was observed at the low current region. As a result, the increase of DC component in the mixed voltages causes the increase of resistive component of total leakage current of ZnO surge arrester. Also, in the case of same applied voltage, the leakage current flowing through the used ZnO surge arrester was higher than that of the new ZnO surge arrester.