• Title/Summary/Keyword: current sampling

Search Result 822, Processing Time 0.029 seconds

8bit 100MHz DAC design for high speed sampling (고속 샘플링 8Bit 100MHz DAC 설계)

  • Lee, Hun-Ki;Choi, Kyu-Hoon
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.6-12
    • /
    • 2006
  • This paper described an 8bit, 100Msample/s CMOS D/A converter using a glitch-time minimization technique for the high-speed sampling rate of 100MHz level. The proposed DAC was implemented in $0.35{\mu}m$ Hynix CMOS technology and adopts a current mode architecture to optimize sampling rate, resolution, chip area. The DAC linear characteristics was similar to the proposed specification and the prototype error between DNL and INL is less than $\pm$0.09LSB respectively. Also, the manufactured DAC chip was analyzed the cause of error operation and proposed the field considerations for chip test.

Estimation of the Number of the Unemployed Using Small Area Estimation Methods (소지역 추정방법을 이용한 실업자 수 추정 사례연구)

  • Kwon, Se-Hyug
    • Survey Research
    • /
    • v.10 no.1
    • /
    • pp.141-154
    • /
    • 2009
  • With the current sampling scheme, the sampling variance is getting larger in producing smaller regional statistics than the designed area, The larger sample size can make the variance reduced but the efficiency of sample survey lower. The desired confidence level of sampling survey can be obtained using the current sample scheme with the same sample size and administrative data. In this paper, the number of the unemployed of 5 regions in Daejon are estimated using small area estimation methods and the CV values in each estimation method is calculated and compared for their estimation efficiency as empirical study. Jackknife method is proposed to estimate the MSE of synthetic estimator and composite estimator more accurately.

  • PDF

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

AN EMPIRICAL BAYESIAN ESTIMATION OF MONTHLY LEVEL AND CHANGE IN TWO-WAY BALANCED ROTATION SAMPLING

  • Lee, Seung-Chun;Park, Yoo-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.175-191
    • /
    • 2003
  • An empirical Bayesian approach is discussed for estimation of characteristics from the two-way balanced rotation sampling design which includes U.S. Current Population Survey and Canadian Labor Force Survey as special cases. An empirical Bayesian estimator is derived for monthly effect under presence of two types of biases and correlations It is shown that the marginal distribution of observation provides more general correlation structure than that frequentist has assumed. Consistent estimators are derived for hyper-parameters in Normal priors.

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2017-2022
    • /
    • 2008
  • Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.

Quantification of Uncertainty Associated with Environmental Site Assessments and Its Reduction Approaches (부지 오염도 평가시 불확실성 정량화 및 저감방안)

  • Kim, Geonha;Back, JongHwan;Song, Yong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Uncertainty associated with a sampling method is very high in evaluating the degree of site contamination; therefore, such uncertainty affects the reliability of precise investigation and remediation verification. In particular, in evaluating a site for a small-sized filling station, underground utilities, such as connection pipes and oil storage tanks, make grid-unit sampling impossible and the resulting increase in uncertainty is inevitable. Accordingly, this study quantified the uncertainty related to the evaluation of the degree of contamination by total petroleum hydrocarbon and by benzene, toluene, ethylene, and xylene. When planning a grid aimed at detecting a hot spot, major factors that influence the increase in uncertainty include grid interval and the size and shape of the hot spot. The current guideline for soil sampling prescribes that the grid interval increase in proportion to the area of the evaluated site, but this heightens the possibility that a hot spot will not be detected. In evaluating a site, therefore, it is crucial to estimate the size and shape of the hot spot in advance and to establish a sampling plan considering a diversity of scenarios.

A Study on Multirate Control Using a Current Estimator (현재 상태 추정기를 이용한 멀티레이트 제어에 관한 연구)

  • 황희철;정정주;정동실
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1004-1013
    • /
    • 2002
  • A multirate state feedback control (MRSFC) method is proposed for systems sensitive to disturbance and noise based on the multirate estimator design using current estimator. MRSFC updates the controller output slower than the measurement sampling fiequency of system output by a lifting factor $R=T_c/T_s$ The closed-loop MRSFC system is less sensitive to disturbance and noise due to filtering effect than the conventional single-rate control system The multirate estimator gain can be obtained by solving a conventional pole placement problem such that MRSFC has the same spectrum of eigenvalues in the s-plane as the single-rate control. We applied the proposed multirate state feedback controller to a galvanometer servo system Simulation and experimental results show that settling and tracking performances are improved compared with a conventional single-rate pole placement control (PPC).

A Novel Bridgeless Interleaved Power Factor Correction Circuit with Single Current Sensor (단일 전류 센서를 이용하는 새로운 브리지 없는 인터리빙 방식의 역률 보상 회로)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.363-364
    • /
    • 2016
  • In this paper, a novel bridgeless interleaved power factor correction circuit with single current sensor is proposed. The proposed control strategy requires only one current sensor for the interleaved bridgeless PFC. By sampling the output current, all the boost indictor currents can be calculated and used to control the input current according to the input voltage. The reduced number of current sensors and associated feedback circuits helps reduce the cost of system. The problem caused by the unequal current gain between current sensors inherently does not exist in the proposed topology. Thus, current sharing between converters can be achieved more accurately and the high frequency distortion is decreased. In addition, the proposed technique can be applied to the other kinds of interleaved PFC topologies. Performance of the proposed control strategy is verified by the experimental results with 6.6kW bridgeless interleaved PFC circuit.

  • PDF

A Digital Current Control using Single DC-Link Current Sensing of BLDC Actuation Systems (단일 DC-Link 전류 계측만을 이용한 BLDC 구동시스템의 디지털 전류 제어)

  • Hahn, Bongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2019
  • In this paper, we propose a digital DC-Link current control approach for BLDC actuation systems. The proposed approach consists of the following two components: first, DC-Link current measurement with sampling instances synchronized with PWM frequency, and second, current control using single DC-Link current rather than three phases current of a motor. The proposed method proved its performance through experiments and simulation. The results showed that the control performance are increased compared with the BLDC actuation system which does not use current control.

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.