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AN EMPIRICAL BAYESIAN ESTIMATION OF
MONTHLY LEVEL AND CHANGE IN TWO-WAY
BALANCED ROTATION SAMPLING

SEUNG-CHUN LEE! AND Y00 SUNG PARK?

ABSTRACT

An empirical Bayesian approach is discussed for estimation of character-
istics from the two-way balanced rotation sampling design which includes
U.S. Current Population Survey and Canadian Labor Force Survey as spe-
cial cases. An empirical Bayesian estimator is derived for monthly effect
under presence of two types of biases and correlations. It is shown that the
marginal distribution of observation provides more general correlation struc-
ture than that frequentist has assumed. Consistent estimators are derived
for hyper-parameters in Normal priors.

AMS 2000 subject classifications. Primary 62C12; Secondary 62D05.
Keywords. Two-way balanced rotation design, empirical Bayesian estimation, bias, vari-

ance components.

1. INTRODUCTION

Rotation sampling design has been used for an effective estimation of char-
acteristic in a panel survey by partially replacing sample units as time advances.
Sample units are partitioned into a finite number of groups, called as rotation
groups, so that sample units in a rotation group are homogeneous. To reduce
or control biases arising from different interview times and rotation groups in
rotation design in a systematic way, Park, Kim and Choi (2001) introduced the
rotation design balanced in two-ways and they called it two-way balanced rota-
tion design. The two-way balanced rotation design by balancing monthly sample
on rotation groups and interview time is shown to include most of currently used
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rotation designs as special cases and to be an effective design to remove biases
arising from rotation design and to reflect two types of correlations into variance.

Recently the appropriateness of model based inference has been widely ac-
cepted in various fields. For example Rubin (1987) argued that any sensible
analysis must be based on an assumed model for the nonresponse. This is some-
what related to our topic because nonresponses or missing values occur inevitably
in a rotation sampling. See also Ghosh and Meeden (1986), Battese, Harter and
Fuller (1988), Prasad and Rao (1990) for the model-based approach in small area
sampling.

The methods that have been proposed use either a variance components ap-
proach or an empirical Bayes (EB) approach. Their methods commonly use
certain mixed linear models for prediction or estimation purpose and are com-
posed of two steps. First, assuming the variance components are known, certain
best estimators or EB estimators are obtained for the unknown parameters of
interest. Then the unknown variance components are estimated by Henderson’s
method of fitting of constants or the restricted maximum likelihood method. This
approach is usually quite satisfactory for point estimation. However, due to the
lack of closed—form expressions for the mean squared errors of the estimators, it
is difficult to estimate the standard errors associated with the estimators. In this
work we propose a model based approach for two-way balanced rotation design.

2. A BAYESIAN MODEL FOR THE 2-WAY ROTATION DESIGN

A rotation system 1 — ro — 71 — - -- — ro — 71 represents the rotation scheme
that a sample unit is in the sample for the first r; months, not in the sample for
the following ro months, and returns to the sample for the following 7, month.
This procedure is repeated until it is interviewed for the mry times and then the
sample unit is retired from the sample. This rotation system is symbolized as
rP— L

In the two-way balanced rotation design adapting ri* — r;”_l rotation system,
all sample units are grouped into mr; rotation groups. These mr) rotation groups
and all interview times from the first time to the (mr1)®" time are represented in
every monthly sample. Typical examples with such properties are U.S. Current
Population Survey, Canadian Labor Force Survey and Australian Labor Force
Survey. Because some of the rT* —r;"_l designs lack such two-way balancing (e.g.
Rao and Graham, 1964; Cantwell, 1990), we refer to Park, Kim and Choi (2001)

for the necessary and sufficient condition of the 2-way balancing. From now on,
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we only concentrate on the two-way balanced design and thus, all observation are
obtained through a two-way balanced rotation sampling.

We assume that k£ sample units are taken from each rotation group during n
months. Thus, total Gnk observations are available to us where G = mry is the
number of group. Let x4 = (zg11,..., g1k, ZTg21,---,Lgnk). A typical element
Zgtj of x4 represents the j*h sample unit from the ¢** rotation group at time
t. Note that two important biases may arise in rotation sampling; they are the
interview time bias and the rotation group bias. Bailer (1975) discussed the inter-
view time bias arising from different interview times in the same survey month.
Cantwell and Caldwell (1998) investigated the rotation group bias arising from
different rotation groups. From these two studies, the two biases are important
factors in rotation sampling design and lead us to consider the following model.

E(zgijlm, v, ) = py + g + (2.1)

where p;, v4¢ and oy are the monthly level at month ¢, the g** rotation group
bias and the [** interview time bias, respectively. Here, we assumed zg; is the
measurement from the sample unit interviewed for the I** time at month ¢.

Park, Kim and Choi (2001) derived two matrices to identify interview time
of a particular rotation group surveyed at month ¢ and to determine whether
or not two sample units are same when they are interviewed at two different
months. The first one is G x G matrix, L} defined as L} = L!"'L; where L9 = I
and for i,j = 1,2,..., g, (L1)s; = 1 if j = (mody{m — m* + (i/r1)}r1 + 1) for
t=7r1,2r;,...,mryorif j =141 fori#ry,2ry,...,mry, and 0 otherwise. Here,
m* is the integer satisfying mod,,{m*(l + 1) — I} = 0 for 1 < m* < m where
I = ro/r1. The second one is another G x G matrix, L} where its (4, )" element
is1ift;=1%;—1tfor j > i and is 0 otherwise. Here, ¢t; = (1 — 1) + ZT:? T2 ljiskry)
where I is the usual indicator function. (L1);; = 1 implies that the rotation
group interviewed for the 5" time at month ¢ is again interviewed for the jth
time at month ¢ + ¢;. (Lgl)ij = 1 implies that two rotation groups contain same
sample units when they are interviewed for the i** and j** times at respective
months ¢ and ¢ + £;.

We assume without loss of generality that the G** rotation group at the initial
month ¢ = 1 is interviewed for the G time. We express this interview time with
G x 1 elementary vector u, where the g'" element is 1 and the remaining elements
are 0. Then, by L, (u;Ltl’l)' indicates the interview time of the g** rotation
group at month ¢ in which the g rotation group is interviewed for the g time
at the initial month. Thus, the interview time bias of zy; is u’gLi_lat where
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a; = (aig, age, - - ., a¢t)’ and hence
E(xgt|p, vy, 0) = pydg + vgels + u;Ltl"loz,gllc for t=1,...,n (2.2)
where Xgt = (Zge1,- -+, Tgtk)'-
Define x = (x3,...,%g), o = (p1,-- -, ), @ = (0,...,a) and v, =
(Yg15---» Ygn) for g =1,2,...,G. Then, from (2.2), we have
E(xglp,y,0) = (p+79, + Mga) ® 1, = (1 +7,) @ 1x + My (2.3)

where 1; is the k x 1 unit vector, ® is the Kronecker product, M, = My ® 1,
and
wr? o .. 0o
o uLi--- 0
Mg _ . . g. 1 . :
o 0 - upL}!

There are two types of correlations in rotation sampling design. They are first-
order and second-order correlations. The first order correlation arises between
successive uses of the same sample unit and the second-order correlation arises
between two sample units from the same rotation group (Kumar and Lee, 1983;
Lee, 1990; Park, Kim and Choi, 2001). To reflect these two correlations and the
expectation of (2.3) into a Bayesian perspective, we might setup a normal EB
model as follows:

(I) Given u,v, and a, the conditional distributions of x4, g = 1,...,G, are
independent multivariate normal with mean E(xg|p,7g, @) = (1 +7,) ®
1 + My and variance-covariance matrix o2I,.

(II) p, a, and v,’s are independent with pu ~ N(aln,02V,), a ~ N(0,0%V,)
and v, ~ N(0,0‘,vafy).

If auxiliary variables are available for g, we might choose a prior distribution
whose mean is A where A is the matrix of auxiliary variables. However, it is
reasonable, we believe, to assume that is a stationary time series for our purpose.
For stationarity, both V, and V,, are n x n correlation matrices only depending
on time lag, and Vy, is a nG x nG correlation matrix with the (4, /)** G x G block
matrix pa,]i—jIL%_i' The second-order correlation is reflected by correlation ma-
trix V., while the first-order correlation is reflected by V. Because the first-order
correlation occurs only between measurements from the same sample unit and
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Lél_tz identifies which two measurements at month ¢; and ¢, are from the same
sample unit only by respective interview times, Cov(ay,, as,) = 02p, Jti— t2|L 2=t
to have the prior distribution of e given above.

By stationarity of u, 7,4, and a, they follow some stationary processes such as
ARMA(p, q¢). However, we may assume that they follow AR(1) processes because
there is no theoretical difference between AR(1) and ARMA(p, q) processes ex-
cept computational complexity and empirical studies (Lee, 1990; Yansaneh and
Fuller, 1992) show that the first and second-order correlations have the typical
correlation structure of AR(1) process. Thus, the (i, )" elements of V,, and V,
are p| 7 and p'v 3l , respectively and pq |;_j| = pg_j | for Va.

Lety = (v,--. ,75)’. Then, from (I) and (II), the joint distribution of x, g,y
and a is given by

1 _
fx,m7, e )ocexp{—2 z(u—aln)'Vul(u—aln 5 %Z’Yg 71
g=1

G

1 '

- —52 —(pt+y,+ Mga)®1x)" (xg— (pt+7,+ Mya)®1k)

G
Z (Mg VM)~ 1Mga}

and it can be shown that the joint marginal distribution of x and u

1 g
202

o) cenp { - (xy — 1 @ 1)/ By (g — 1 © 1)

i=1 (2.4)

1 -
— F(H —aly)'V, Yu - aln)}
m

where Ay = 02/0%, Xy = 02/0? and
By = Ink + AaMgVe My + 2V, ® Iy
From (2.4) we can obtain following result.

LEMMA 2.1. Under the model (I) and (II) the conditional distribution of u
given x and the marginal distribution of X are multivariate normals with mean
and variance-covariance, (E(aV, 11, +A, > BgXg), o’E) and (algnk,02Q), re-
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spectively, where X, = aﬁ/az,ig = (Zg1,. .., Zgn) With Tge = k™1 Zle Tgtjs
G -1

_ -1 _1 !
E=(V,'+)\,) By , By= £In + AaMy VoM + 1,V

g=1

and

Q =diag(Bi,...,Ba) + \Jg® (V. ® Jg).

Let ag4(t) be the label of subunit in group ¢ at time ¢. Then zg and gy
are the samples from a same subunit if and only if a4(t) = a4(t'). With this
notation we can summarize following covariance structure of zy;’s from Lemma
2.1

COV(fL'gt]‘, jg’t’j’)

(o2017", ifg#4,

_, <7?yp|7t_t/| + aﬁplj—t’[, if g = ¢’ but ay(t) # ay(t'), 25)
o2pl 4 U?Yplnf—tll + Uipllf_t,|, if g =g, 0y(t) = au(t') but k # K,
\02+03+03+JZ, ifg=g¢,t=t and k =k’

In a frequentist point of view each group is independent and because of the
independence we have that the sampled group or population give us no informa-
tion about the unsampled group or population. In order to relate the unsampled
group to the sampled group we need a prior which makes the groups dependent.
This is somewhat related to the superpopulation approach. The model (I) and
(IT) introduce p as a hyperparameter.

p~ is the second-order correlation occurring from the same rotation group,
while p, account for the correlation due to the successive use of same subunit.
Because samples from the same subunit always belong to the same rotation group,
the correlation within subunit is the compound effects of rotation group and
subunit. The first-order correlation, which is originally defined to these compound
effects, can be explained by p, in our model.

3. EsTIMATION

In a rotation sampling it might be a main focus to estimate the monthly levels
or monthly changes. If we assume the squared error loss, it is well known that the
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conditional mean is the Bayes estimator. Thus the Bayes estimator of monthly
levels p is E(aV;lln + A Z?:l B;lig). Also the Bayes estimator of a monthly
change can be obtained easily from the Bayes estimator of u. However, many
unknown parameters are involved in the Bayes estimator of pu. As we mentioned
earlier this leads us to rely on the EB method. The unknown variance components
are estimated by the analysis of variance method or the method of moment. First
we will have a consistent estimator of o2 by the following theorem.

THEOREM 3.1.  Under the model (1) and (II) 3,57, >~ (zgtj — :igt)Z /o? fol-
lows a x%-distribution with Gn(k — 1) degrees of freedom.

The proof of Theorem 3.1 is given in Appendix. By the theorem we see that
1 o2
MSE = m ; ; ; (xgtk - Igt)

is a consistent estimator of o2.

Next the estimation problems of the other variance components and corre-
lations will be considered. Since X,’s are sufficient for the problems, we start
with the marginal distribution of X = (X],X3,...,X;;)’. Because Lemma 3.1 is
an obvious extension of Lemma 2.1, the proof will be omitted.

LEMMA 3.1. Under the model (I) and (II) the marginal distribution of X is a

multivariate normal with mean alg, and variance-covariance matriz 02Q where
Q=D+ Jeg®V, and D = diag (B1,...,Bg).

THEOREM 3.2. Let R is a quadratic form of Zg;’s, then R is independent of
MSE.

To obtain estimator of variance components, various methods can be applied.
For example, Datta and Ghosh (1991) used Henderson’s fitting constant method
for their mixed model. Although Henderson’s fitting constant method gives unbi-
ased estimators for mixed models, it is required to calculate generalized inverses
of very large matrices. The complication of model (I) and (II) might cause diffi-
culties in calculating not only reductions in sums of squares but also coefficients
of the variance components and correlations. If we note that the suggested Bayes
model is not a mixed model, we have a plenty of choice for employing analysis
of variance type estimation. Because we should estimates various correlations
as well as variance components, we believe that a method of estimating vari-
ance components based on symmetric sums of products of observations, rather
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than sums of squares, which was suggested by Koch (1967, 1968) is appropriate.
Koch’s method uses the fact that expected values of products of observations are
linear functions of the variance components and correlations. Even though there
are infinitely many quadratic forms that can be used in the manner of Koch’s
method and it gives no criteria for selecting the quadratic forms to be used, this
procedure is widely used in the context of variance component estimation.

Noting (2.5), we might equate observed values of following symmetric sums
of product to their expected values and solve the resulting equations to get esti-
mators of the variance components and correlations:

1 G =n
Ts= =D D %

g=1 t=1

e
1 -
T = Ga =) 2 %%

g#g’
1 G n
Tpg = ———— T T
BG nG(G — 1) %/ t_zl ZgtZg'ty
g =
1 G n-1
TgaL = TgtTy't+1, (3.1)
(n—l)G(G—l)SggI; gty
1 G n-1
Test1 = - ; ; TgiZgriily(t,t + 1),
1 G n—2
TpsLe = L gz:; ; TgiZgt421i(t,t +2),
1 G n—-1
Twst = 37 SN Tdgn (1 - Lt t+ 1)),
g=1 t=1

where L, = gG:1 Sl Lt t4p)forp=1,2, M = Zle S 11, (t, t4p)) =
G(n — 1) — Ly and Ii(t,s) is an indicator function defined by I (t,s) = 1, if
ay(t) # ag(s), and Iy(t,s) = 0, otherwise. It is, however, possible to use other
symmetric sums of products.

Next we shall see how T’s in (3.1) can be used in obtaining consistent estima-
tors of various variance components and correlations. The following lemma gives
the convergence result of those symmetric sums of products given in (3.1).

LEMMA 3.2. Consider the model given in (I) and (II). Then each symmetric
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sums of products given in (3.1) converge in probability to their exact or asymptotic
means, a2, az + a2, O’ﬁp# + a2, cr?yp7 + Uzpu + a2, a,%p% + azpi + a2, a?lpa +

0,2yp7 + aipﬂ +a? and 0% [k + o2 + O’,ZY + aﬁ + a?, respectively.

Now we equate T's in (3.1) to their expectations. Let

MSpg = Tpg — Tm = ZZ Zgt — Zg) (Tge — Ty)
g#a’ t=1
MSgg is a cross covariance analogous to (6.5.2) in Fuller (1976) and by Lemma
3.2, MSpq converges in probability to oﬁ. Hence, consistent estimators of 02 and
Ay are given by

» 5 _ O
0, = max(0,MSpg) and X\, = VSE-

Also (TgaL — Tm)/MSgg converges in probability to p,. However, Tpgr, —Tm =
MSgaL + 0p(n~!) where

G n-1
MSgaL = é_ 0 Z Z Tgt — Zg)(Zgre41 — Tg')-
979 t=1
MSgaL/MSpg and (Tsagr — Tm)/MSgg differ only a negligible term and have a
common limit. It is preferable to adopt MSgqr instead of Tegr — Twm because
MSggL is a cross covariance analogous. (See also p.236 of Fuller, 1976). A
consistent estimator of p, is given by

MS
_ BGL © if MSg¢ > 0,
pﬂ = MSBG

0, otherwise.

The other estimations are rather complicate. For example, the estimators of

o?, and o2, suggested by Koch, are not linear functions of T’s, and they are not
unbiased. However, Koch’s method still gives consistent estimators. It also noted
that Koch’s method suggests a little bit strange quantity Ts —Ty. Although it is
a consistent estimator of o2 /k + o2+ a + 0 and is necessary to estimate o2, Ty
in Tg — Ty can be replaced safely by G 1 Z 1 a: to retain consistency. It also
guarantees the positive estimation of o2/k + o2 + 07 + O'# and reduce variance

slightly. Hence it is desirable to estimate 02/k + o2 + 03 + aﬁ by

G n
MSwg = % ZZ xgt
g=1t=1
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Accounting for negative estimation of a variance, consistent estimators of
03, py, 02 and p, can be obtained sequentially as follow:

o (Tesu1 — TaoL)?
oy = max | 0, 5= = )
Tesr2 — TeeL + 75pu(l — py)

TgsL1 — TeaL
~ =2
Py = Ty

0, otherwise,

, if52 #0,

P 1 - -

02 = max (O, MSwqg — EMSE — 0,27 — UZ) ,
Twst — Tssr1
P = % .
0, otherwise.

, ifG2£0,

Hence consistent estimators of A, and )\, are given by

~2
Ry = L

MSE

~2
o~ o2 MSWG -~ >~ 1
Ag = —2— = S N
" MSE  MSE TRk

Throughout Section 3, we have obtained consistent estimators of various vari-
ance components and correlations. To estimate a based on the marginal distri-
bution of the Zy, first Q would be estimated by substituting each A’s and p’s in
Q for their estimators, then applies the maximum likelihood method, which will
give R

Q%
llcné_llGn
Substituting the estimators @, ﬁ, {7” and ﬁg’s respectively for a, E, V,, and B,’s,
it follows that an EB estimator of monthly level 4 is given by

a=

G
=BV + 0 Y B %,) (3.2)
g9

4. CONCLUSION

The procedure for (3.2) is widely accepted. See, for example, Ghosh and
Meeden (1997). However, it is conceivable to think of procedures alternative to
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the proposed method of EB estimation. A natural candidate is an EB estimator
based on MLE’s of a, A’s and p’s. It should be noted that the maximum likeli-
hood equations do not admit any closed-form solutions. Also the proposed EB
estimator is based on the consistent estimators, the large sample property would
not differ much from that of the estimator based on MLE. Because the rotation
sampling is used usually for long-terms, we believe, the proposed EB estimator
would be competitive to the MLE based estimator.

One might criticize the assumption that the sample size k is the same for
all subunits may not be realistic in practice. Note, however, the intra-subunit

2 may differ from each subunit, and it is natural to adjust the sam-

variance o
ple size so that T, have the same intra-subunit variance. In fact, the GCE or
the MVLUE(Minimum Variance Linear Unbiased Estimator) is obtained under
assumptions that the intra-subunit variance Z, is the same, and the value is
known, or can be estimated by other device. With these assumptions, x is still
sufficient statistic. A slight modification of formulas can enable the results to be

usable.

APPENDIX

PROOF OF THEOREM 3.1. Let Dgpn(Jx) = Ign®Jk. Then it is easy to check
that

k
is an idempotent matrix. Also we have 1, (Ignk —k 'Dgn(Jk))1enk = 0. Thus
D gt (Toti — Tgt)® o2 = x'(I— k™ 'D,,(Jx))x/0? is a x? random variable with
rank(Igne — K 'Dgn(Jx)) = Gn(k — 1) degrees of freedom. O

1 1
(IGnk — EDGn(Jk)> Q = Ignk — ~Dan(Jk) (5.1)

PROOF OF THEOREM 3.2. By (5.1), a quadratic form x'Ax is independent
of MSE if and only if

1 1
(IGnk - EDGn(Jk)> QA = <IGnk - EDGn(Jk)> A=0.

Note that Ig,t — kK 'Dgn(Jx) is the orthogonal projection matrix of the column
space of Dgn(1x) = Ign ® 1x. Thus x’ Ax is independent of MSE if and only if

col(A) C col (Dgn(1k))

where col(A) denotes the column space of A. Since ¥ = k 'Dg,(1;)'x, a
quadratic form %X'Bx% of % can be written as X' Bx = k7 2x'Dgy,(1x)ADgn(1x)'x
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and
col (Dgn(lk)BDGn(lk)l) C col (DGn(lk)) .

We see that a quadratic form of Z4's is independent of MSE. 0

The following results are useful to prove subsequent theorems and lemmas.

LEMMA 5.1. Under the model (I) and (II),

1. 1,V,1, = 0(n), tx(V2)=0(n), tr(V,V,)=0(n).
2. 1,V,1, = 0(n), tr(V2)=O(n).

3. 1,B,1, = O(n), 1,B,B,1, =O0(n).

4. tr(B,B,) = O(n), tr(B,V,) = O(n).

PROOF. Since 1, V,1, = n(l+py)/(1=py)—2p,(1-p)/(1—p,), tr(V2) =
n(L+02)/ (1= p2) = 202 (1~ p27) /(1 = £2), tx(V5 V) = n(L+ pypye) /(1= pryu)
2040u(1 — p5p3) /(1 — pypyu), and V4 and 'V, have the same structure, the first
and the second assertions are obvious.

Next consider MgVaM’g in By. It should be noted that in a 2-way balanced
7 —r~1 design each column and each row of M,V M has at most mr| nonzero
elements and the absolute value of each nonzero element is less than or equal to
1. Thus each elements of B41,, as well as MgVaquln is O(1) and we have

1,B,1, =O(n) and 1,B,By1l, = O(n).

It remains to show that tr(ByB,) = O(n) and tr(B,V,) = O(n). Note that
tr(Mg VoM, My VM) = O(n), tr(MgV.M;V,) = O(n) and tr(MyV,My
V,) = O(n). These also follow from the fact that each columns and rows of
M,V ,M; has at most r;m nonzero elements. Hence
L+ 22 (M, VoM, + M, VM) + 220V
‘k—gn+‘k—( ¢ VaMy + My VoMy) +2-1V,

+tr [AZMy VM, MV, M,
242
+Aahy, (My VoMl + MgVeM,) V, + A2V2]
B 1 Aa Ay
= n(ﬁ + 2? + Q—k') + O(n)
= O(n),

tr (ByB,) = tr [
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1
tr (ByV,) = tr EV" +AMGVMV, + ANV, V),

= O(n).
g

ProoF oF LEMMA 3.2. Consider the convergence of Ty;. Using Corollary
1.1, Corollary 1.2 of Searl (1971) and previous results, it follows that

+ o} (O%>1
2

E(zyzy)

_a ol [0 1B+ V)1, A1LV,,
n? 50 Aulpy Vil 15, (By+2u V) 1n
2
g
= n—gl'nVuln + a?

=a?24+0(n™h,

Var(Z,Zy)

2
_ 0 o V(1B + A V)1, ALV,
nt 0 A1Vl 1, (By + A V,) 1,
N 4a202 v [02) (1 (Bg+ MV 1n Al V1, 03,
n? ?\30 MlpViln 1, (By + 0V 1) \J0)

4
g
= 2 { 1By 11, By 1y + Au1,V,ula (1,By 1n + 1,Bg 1) + 20%(1,V,u1n)? |

= O

a’c?

+—3 (1,Byl, + 1By 1, +4X,1,V,1,)

nt n?

@) , o)

=0(n™).
These show that Z,7, — a? in probability for every g # ¢', and hence Ty — a?
as n — 0.
Next it is easy to check that
E(Tgg) = 0, + a?, E(TgaL) = 0.pu + a%,
E(Tgsp1) = U,%,p’y + O‘Zpﬂ + a2, E(Tgs12) = 0',2yp,2y + UIQIPIQL + a2,
E(TwsL) = 02pq + azp., + aipu + a?, E(Ts) = o®/k + 02 + a?, + aﬁ +a?.
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Thus it remains to show that each T’s converges to its expected value.
As before, to prove the convergence of Tgg, it suffices to show that the vari-

ance of n~!Y % | Z,4Zyy has order O(n~1) for every g # ¢'. Since

Var(x;X,)

2
— ogdir 10 LY (Bi+ AV AV,
iIn 0 )‘HVH Bg' + )\uVu

0 i1 B,+\,V A,V 0 ir
40621’ 24n 9 uyp Y 27 ) q
Teoe o (%In 0)( AV, Bg/+AﬂVu> (-;-In 0) n

= o'tr (ByBy+A,ByV,+2,ByV, +2V2)
+0%a®(1,Byl, + 1,By1,+44,1,V,1,)
= 0(n), '
we see that Var ( n™' Y"1 | 243 g¢) = Var ( n‘li;ig/) = O(n™'). Thus Tpg as
well as n™!S°0 | Ty1Z 4+ converge in probability to aﬁpu +a? Let Lbeanxn

_ OIn—l
- ()

matrix such that

Then

1 n—1
Var - Z TotTyt4+1
t=1

2
_ 20_4tr 10 LY (By+ AV, AV,
n? -Z'LI 0 VN Bgl —+ Al‘VlL

N My 0 iL\ (By+AV, AV, 0 iL ”
n? AL 0 V., Bg+XAV,/\iL' 0 "

4

= &5 [tr(L'ByL By)+ Autr(L'BgLV,,) + Autx(L'V,LBy)

+ALtr(LV,LV,,) + A2 tr(L'V,LV )]
2

a2a

+ —5 [I'LByL'1 + 1'L'B,L1

+2, {'LV,L'1 4+ 2I'LV,L1 + I'L'V,L 1}]



BAYESIAN ESTIMATION FOR ROTATION SAMPLING DESIGN 189

4
g
= 25 [tr(B}'BE) + Muts(B}' VE) + A, tx(VL BE)

2 21x721 2 11x711
A (VEVE) + Atr(V, V, )]
2.2

a"g 22 11
5 (1,1 By 1n1+ 1, B 1,

+22, {1, V) I+ 1, VI, 1 }]

where C!1, C?? and C?! represent the upper-left, the lower-right, and the lower-
left (n — 1) x (n — 1) matrices of C, respectively. It can be shown by a similar
argument given in the proof of Lemma 5.1 that each term in the brackets of the
above equation is O(n). Thus we have

1 n—1 ~
Var (E Z "Egti‘g’t—Fl) = O('n, 1).
t=1

This shows that for every g # ¢/, n™! Z?:—ll TgtT 441 converges in probability to
aﬁpy + a®. Therefore TpgL converges in probability to aipu + a2

Next, to prove the convergence of Tggri, we first show that, for each ¢ =
1,2,...,G,

1
TgtZgtr1lg(t,t +1) (5.2)
1

n

1
Lg

i

where Ly = Z;‘z—ll I,(t,t + 1), converges in probability to its mean, but it can be
done by showing that, for every i = 1,2,...,9,

n—1

> Cov (ZgeZgrat, Tgr Tgr+1) Io(t t + DIt ¥ + 1) = O(Ly), (5.3)
t=1 t'>t

because (5.3) is the dominant part of Var(31=)' ZgeZge1Ly(t, t + 1)).

Let S, be the set of all time ¢ such that a(t) # ag(t +1). That is, S, is the
set of all ¢ such that a subunit is replaced between time ¢t and ¢ + 1 in group g.
Suppose that ¢ and ¢’ are the elements of S;. According to the nature of 2-way
balanced r* — r7*~! design, we should consider five cases, (i) oy (t) = ae(t'), (i1)
ag(t) = ag(t' +1), (iii) ag(t + 1) = ay(t’), (iv) ag(t + 1) = ag(t’ + 1) and (v)
none of the above 4 cases, to obtain the covariance of TgtTgt+1 and TypTep 4. For



190 SEUNG-CHUN LEE AND Y00 SUNG PARK

example if (¢,¢') satisfies the condition (v), and ¢’ > ¢, then

Cov(ZgtTges1, Tgp Tgr+1)
=t [Nt —t) + A —t - DA +1 —t)] (5.4)
+a?? A =) + A —t— 1)+ A +1—1¢)]

where A(t) = )Wpfy + )\up,t, The other conditions produce a slightly different
covariance formula. However, if t' — ¢ is sufficiently large, the pair (¢,t') satisfies
the condition (v), i.e., there are only finite number of pairs (¢,t') which does not
satisfy the condition (v). Thus for each fixed ¢t € S,

E : Cov(ZgtZgt+1, Tgrr Tor+1)
t'E€Sg,t' >t

= 3 [04{)\2(t'—t)+)\(t'—t—1)/\(t'+1_t)}

# €St >t

+a20? {2A(t' )+/\(t’—t~l)+>\(t'+1—t)}]+O(1).

Note that if ¢,t' € Sy and t' > ¢, then ¢/ = t 4+ ril for some [ = 1,2,... Thus
Writing omax = max(o,,0,) and pmax = max(|p,|, |pul), we have

Z Cov(i'gtjgt—{—l,jgt’figt’+1)l (55)
t €Syt >t ‘
< Y ftohaiet + 2o, {20t - o+ b2} + o)
t'€Sg,t' >t

o0
<> [aohuustitt + 2t {20+ i + it} | + 0) = 0

Since the number of elements in S, is Ly, (??) implies (5.3). We have seen that
(5.2) converges as n — oco. However, Ly - coasn —oo,and Ly = Ly = -+ = L,
for n sufﬁciently large, it follows that Tgpgr; converges in probability to its mean

7p7 + Uﬂpﬂ +a2. This completes the proof of the convergence of Tpgy;. Similar
argument can be applied to the cases of Tpsrs and Twsr,. Thus it remains to
show that Tg converges to o2/k + o2 + 03 + aﬁ + a?. This also can be done by
applying Corollary 1.1, Corollary 1.2 of Searl (1971). a

REFERENCES

BaILAR, B. (1975). “The effects of rotation group bias on estimates from panel survey”,
Journal of the American Statistical Association, 70, 23-30.



BAYESIAN ESTIMATION FOR ROTATION SAMPLING DESIGN 191

BATTESE, G., HARTER, R. AND FULLER, W. (1988). “An error-components models for
prediction of county crop areas using survey and satellite data”, Journal of the American
Statistical Association, 83, 28-36.

CanTwEeLL, P. J. (1990). “Variance formulae for composite estimators in rotation designs”,
Survey Methodology, 16, 153-163.

CANTWELL, P. J. AND CaLpWELL, C. V. (1998). “Examining the revisions in Monthly
Retail and Wholesale Trade Surveys under a rotating panel design”, Journal of Official
Statistics, 14, 47-59.

DarTA, G. S. AND GHOSH, M. (1991). “Bayesian prediction in linear models : Applications
to small area estimation”, Annal of Statistics, 19, 1748-1770.

FuLLER, W. (1976). Introduction to Statistical Time Series, John Wiley, New York.

GuosH, M. AND MEEDEN, G. (1986). Bayesian Methods for Finite Population Sampling,
Chapman & Hall, New York.

KocH, G. G. (1967). “A general approach to the estimation of variance components”, Tech-
nometrics, 9, 93~118.

KocH, G. G. (1968). “Some further remarks concerning a general approach to the estimation
of variance components”, Technometrics, 10, 551-558.

KumaAR, S. AND LEE, H. (1983). “Evaluation of composite estimation for the Canadian Labor
Force Survey”, Survey Methodology, 9, 403-408.

Lee, H. (1990). “Estimation of panel correlations for the Canadian Labour Force Survey”,
Survey Methodology, 16, 283-292.

PARK, Y. S., KM, K. AND CHoI, J. (2001). “One-level rotation design balanced on time in
monthly sample and in rotation group”, Journal of the American Statistical Association,
96, 1483-1496.

PrasaDp, N. G. N. AND Rao, J. N. K. (1990). “On the estimation of mean square error of
small area predictors”, Journal of the American Statistical Association, 85, 163-171.

Rao, J. N. K. AND GRAHAM, J. E. (1964). “Rotation designs for sampling on repeated
occasions”, Journal of the American Statistical Association, 59, 492-509.

RuBiN, D. B. (1986). Multiple Imputation for Nonresponse in Surveys, John Wiley, New
York.

SEARLE, S. R. (1971). Linear Models, John Wiley, New York.

YANSANEH, I. S. AND FULLER, W. A. (1992). “Alternative estimators for the Current Pop-
ulation Survey”, Proceedings of the Section on Survey Research Methods in American
Statistical Association. 488-498.



