Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.10.2017

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing  

Jee, Jun-Goo (Center for Priority Areas, Tokyo Metropolitan University)
Publication Information
Abstract
Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.
Keywords
Non-uniform sampling; Maximum entropy processing; NMR; Real-time acquisition
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Rovnyak, D.; Frueh, D. P.; Sastry, M.; Sun, Z. Y.; Stern, A. S.; Hoch, J. C.; Wagner, G. J. Magn. Reson. 2004, 170, 15-21   DOI   ScienceOn
2 Kazimierczuk, K.; Kozminski, W.; Zhukov, I. J. Magn. Reson. 2006, 179, 323-328   DOI   ScienceOn
3 Kupce, E.; Freeman, R. J. Am. Chem. Soc. 2003, 125, 13958- 13959   DOI   ScienceOn
4 Kim, S.; Szyperski, T. J. Am. Chem. Soc. 2003, 125, 1385-1393   DOI   ScienceOn
5 Tugarinov, V.; Kay, L. E.; Ibraghimov, I.; Orekhov, V. Y. J. Am. Chem. Soc. 2005, 127, 2767-2775   DOI   ScienceOn
6 Orekhov, V. Y.; Ibraghimov, I.; Billeter, M. J. Biomol. NMR 2003, 27, 165-173   DOI   ScienceOn
7 Kazimierczuk, K.; Zawadzka, A.; Kozminski, W.; Zhukov, I. J. Am. Chem. Soc. 2008, 130, 5404-5405   DOI   ScienceOn
8 Jaravine, V.; Ibraghimov, I.; Orekhov, V. Y. Nat. Methods 2006, 3, 605-607   DOI   ScienceOn
9 Jaravine, V. A.; Orekhov, V. Y. J. Am. Chem. Soc. 2006, 128, 13421-13426   DOI   ScienceOn
10 Jee, J.; Byeon, I. J.; Louis, J. M.; Gronenborn, A. M. Proteins 2008, 71, 1420-1431   DOI   ScienceOn
11 Schanda, P.; Van Melckebeke, H.; Brutscher, B. J. Am. Chem. Soc. 2006, 128, 9042-9043   DOI   ScienceOn
12 Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277-293
13 Hoch, J. C.; Stern, A. S. Methods Enzymol 2001, 338, 159-178