• 제목/요약/키워드: current injection

Search Result 1,045, Processing Time 0.052 seconds

Study on the Characteristic Analysis and the Design of the IGBT Structure with Trap Injection for Improved Switching Characteristics (트랩 주입의 구조적 설계에 따른 LIGBT의 전기적 특성 개선에 관한 연구)

  • Gang, Lee-Gu;Chu, Gyo-Hyeok;Kim, Sang-Sik;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.463-467
    • /
    • 2000
  • In this paper, the new LIGBT structures with trap injection are proposed to improve switching characteristics of the conventional SOI LIGBT. The Simulations are performed in order to investigate the effects of the positiion, whidth and concentration of trap injection region with a reduced minority carrier lifetime using 2D device simulator MEDICI. Their electrical characteristics are analyzed and the optimum design parameters are extracted. As a result of simulation, the turn off time for the model A with the trap injection is $0.78\mus$. These results indicate the improvement of about 2 times compared with the conventional SOI LIGBT because trap injection prevents minority carriers which is stored in the n-drift region during turn off switching. The latching current is $1.5\times10^{-4}A/\mum$ and forward blocking voltage is 168V which are superior to those of conventional structure. It is shown that the trap injection is very effective to reduce the turn off time with a little increasing of on-state voltage drop if its design and process parameters are optimized.

  • PDF

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze;Karakaya, Serkan;Dilgin, Yusuf
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

Third Harmonic Injection Circuit to Eliminate Electrolytic Capacitors in Light-Emitting Diode Drivers

  • Yoo, Jin-Wan;Jung, Kwang-Hyun;Jeon, In-Ung;Park, Chong-Yeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.358-365
    • /
    • 2012
  • A new third harmonic injection circuit for light-emitting diode (LED) drivers is proposed to eliminate electrolytic capacitors and thereby extend the lifetime of LED drivers. When a third harmonic current is injected to the input current of the LED driver, the required capacitance of the driver can be reduced. The proposed circuit can control an injection ratio and has simple circuitry. The synchronous third harmonic is generated by a phase locked loop (PLL), a 1/3 counter, and op-amps and applied to a power factor correction circuit. Thus, the storage capacitor can install film capacitors instead of the electrolytic capacitor. The value of storage capacitance can be reduced to 78% compared to an input power factor of 100%. The proposed circuit is applied to the 80W prototype LED driver to experimentally verify the performances.

Novel Third Harmonic Current Injection Technique for Harmonic Reduction of Controlled Converters

  • Eltamaly, Ali M.
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.925-934
    • /
    • 2012
  • Three-phase controlled converters have many applications in the utility interfacing of renewable energy sources and adjustable speed drives as a rectifier or inverter. The utility line currents of these converters have a high harmonic distortion, which is more than the harmonic standards. This paper introduces a new technique for circulating the third harmonic currents from the dc-link to the line currents to reduce their harmonic contents. The proposed system uses a single-phase PWM converter to control the angle and amplitude of the injection current for each of the firing angle of a three-phase converter. A detailed analysis is introduced to achieve a relationship between the firing angle of the three-phase controlled converter and the power angle of the PWM converter. In addition, a detailed design for the other injection path components is introduced. A simulation and experimental work is introduced to prove the mathematical derivations. Analysis, simulation and experimental results prove the superiority of the proposed technique.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Study of Pulse Generation Technique for Serial dual Electrode Detection of Amino Acids and Proteins in Flow Injection Analysis

  • Fung, Ying-Sing;Mo, Song-Ying
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.575-582
    • /
    • 1995
  • A new analytical procedure using a serial dual electrode detector was developed for the analysis of amino acids and proteins. Bromine was generated at the upstream electrode and detected by the downstream electrode. The presence of amino acids and proteins was shown to lower the downstream current but with no apparent effect on the upstream current. This indirect mode of detection can be applied to the determination of amino acids and proteins which are electrochemically inactive or too large to be accessible to the electrode surface for electron exchange. The method is shown capable to determine various amino acids (cystine, tyrosine, lysine, tryptophan, glycine, methionine and arginine) and proteins (cytochrome c, hemoglobin, HAS, a-Amylase, Conalbumin I, Catalase and Myglobin) with linear working range for amino acids between $10^{-6}$ to $10^{-3}M$ and total proteins between $10^{-7}$ to $10^{-3}M$. The method has been applied for the analysis of amino acids and total protein in food using Flow Injection Analysis with results obtained comparable to those using the traditional analytical procedure. Use of pulse generation technique was shown to produce a more stable flow injection analysis peaks for repetitive determination than the use of conventional constant current method which showed increase of the background current after determination over 200 minutes. The pulse method was found to give stable baseline even after 400 minutes. Thus, the method is shown able to provide a suitable analytical procedure for automatic analysis of amino acids and proteins in food by flow injection analysis.

  • PDF

Harmonic Reduction of Diode Rectifiers by a New Zero-Sequence Current Injection Method (새로운 영상전류 주입법에 의한 다이오드 정류기의 고조파 저감)

  • 김현정;장민수;최세완;원충연;김규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.596-603
    • /
    • 2002
  • In this paper a new harmonic reduction method of three-phase diode rectifiers is proposed to improve input current performance using the zero-sequence harmonics injection technique. The proposed mothed, based on the third-harmonic injection, employs two half-bridge inverters and two single-phase transformers to independently shape the positive and negative dc rail currents of the diode rectifier. The actively shaped zero-sequence harmonic currents are t]ten circulated through the ac side of the rectifier using a zigzag transformer This results in pure sinusoidal input currents in the three-phase diode rectifier. Experimental results on a 1.5kVA prototype are provided to validate the proposed technique.

Immunity Test for Semiconductor Integrated Circuits Considering Power Transfer Efficiency of the Bulk Current Injection Method

  • Kim, NaHyun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.202-211
    • /
    • 2014
  • The bulk current injection (BCI) and direct power injection (DPI) method have been established as the standards for the electromagnetic susceptibility (EMS) test. Because the BCI test uses a probe to inject magnetically coupled electromagnetic (EM) noise, there is a significant difference between the power supplied by the radio frequency (RF) generator and that transferred to the integrated circuit (IC). Thus, the immunity estimated by the forward power cannot show the susceptibility of the IC itself. This paper derives the real injected power at the failure point of the IC using the power transfer efficiency of the BCI method. We propose and mathematically derive the power transfer efficiency based on equivalent circuit models representing the BCI test setup. The BCI test is performed on I/O buffers with and without decoupling capacitors, and their immunities are evaluated based on the traditional forward power and the real injected power proposed in this work. The real injected power shows the actual noise power level that the IC can tolerate. Using the real injected power as an indicator for the EMS test, we show that the on-chip decoupling capacitor enhances the EM noise immunity.

PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology (PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰)

  • 나준희;최서윤;김용구;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.21-29
    • /
    • 2004
  • Hot carrier degradation characteristics of Nano-scale CMOSFETs with dual gate oxide have been analyzed in depth. It is shown that, PMOSFET lifetime dominate the device lifetime than NMOSFET In Nano-scale CMOSFETs, that is, PMOSFET lifetime under CHC (Channel Hot Carrier) stress is much lower than NMOSFET lifetime under DAHC (Dram Avalanche Hot Carrier) stress. (In case of thin MOSFET, CHC stress showed severe degradation than DAHC for PMOSFET and DAHC than CHC for NMOSFET as well known.) Therefore, the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor in upcoming Nano-scale CMOSFET technology. In case of PMOSFETs, CHC shows enhanced degradation than DAHC regardless of thin and thick PMOSFETs. However, what is important is that hot hole injection rather than hot electron injection play a important role in PMOSFET degradation i.e. threshold voltage increases and saturation drain current decreases due to the hot carrier stresses for both thin and thick PMOSFET. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method. Therefore, suppression of PMOSFET hot carrier degradation or hot hole injection is highly necessary to enhance overall device lifetime or circuit lifetime in Nano-scale CMOSFET technology