Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00605

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide  

Emir, Gamze (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry)
Karakaya, Serkan (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry)
Dilgin, Yusuf (Canakkale Onsekiz Mart University, Science and Arts Faculty of Department of Chemistry)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 248-256 More about this Journal
Abstract
In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.
Keywords
Graphite Pencil Electrode; Pyrocatechol Violet; Electrocatalytic Oxidation; Sulfide; Flow Injection Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Emir, Y. Dilgin, Anal Lett, 2018, 51(1-2), 133-150.   DOI
2 D.L. Vu, L. Cervenka, Electroanalysis, 2013, 8(25), 1967-1973.
3 B. Ertek, D.L. Vu, L. Cervenka, Y. Dilgin, Anal Sci, 2012, 28(11), 1075-1080.   DOI
4 Y. Dilgin, S. Canarslan, O. Ayyildiz, B. Ertek, G. Nisli, Electrochim Acta, 2012, 66, 173-179.   DOI
5 J.L. Chang, G.T. Wei, T.Y. Chen, J.M. Zen, Electroanalysis, 2013, 25(4), 845-849.   DOI
6 D.M. Tsai, A.S. Kumar, J.M. Zen, Anal Chim Acta, 2006, 556(1), 145-150.   DOI
7 G. Roman, A.C. Pappas, D.K. Demertzi, M.I. Prodromidis, Anal Chim Acta, 2004, 523, 201-207.   DOI
8 L.L. Paim, N.R. Stradiotto, Electrochim Acta, 2010, 55(13), 4144-4147.   DOI
9 X. Cao, H. Xu, S. Ding, Y. Ye, X. Ge, L. Yu, Food Chem, 2016, 194, 1224-1229.   DOI
10 Y. Dilgin, B. Kizilkaya, B. Ertek, N. Eren, D.G. Dilgin, Talanta, 2012, 89, 490-495.   DOI
11 P. Jeroschewski, C. Steuckart, M. Kuhl, Anal Chem, 1996, 68(24), 4351-4357.   DOI
12 E. Schmidt, A. Marton, J. Hlavay, Talanta, 1994, 41(7), 1219-1224.   DOI
13 I.G. David, D.E. Popa, M. Buleandra, J Anal Method Chem, 2017, 2017.
14 A.N. Kawde, N. Baig, M. Sajid, RSC Adv, 2016, 6(94), 91325-91340.   DOI
15 J. Wang, A.N. Kawde, E. Sahlin, Analyst, 2000, 125(1), 5-7.   DOI
16 Z.O. Uygun, Y. Dilgin, Sens Actuat B, 2013, 188, 78-84.   DOI
17 S. Karakaya, Y. Dilgin, Electroanalysis, 2017, 29(6), 1626-1634.   DOI
18 A. Ozcan, S. llkbas, Sens Actuat B, 2015, 215, 518-524.   DOI
19 O. Saglam, B. Kizilkaya, H. Uysal, Y. Dilgin, Talanta, 2016, 147, 315-321.   DOI
20 B. Ertek, C. Akgul, Y. Dilgin, RSC Adv, 2016, 6, 20058-20066.   DOI
21 N. Jadon, R. Jain, A. Pandey, J Electroanal Chem, 2017, 788, 7-13.   DOI
22 D.B. Kayan, D. Kocak, M. Ilhan, A. Koca, Int. J. Hydrogen Energy, 2017, 42(4), 2457-2463.   DOI
23 S.P. Li, K.D. Hu, L.Y. Hu, Y.H. Li, A.M. Jiang, F. Xiao, Y. Han, Y.S. Liu, H. Zhang, J Agr Food Chem, 2014, 62(5), 1119-1129.   DOI
24 A.B. Florou, M.I. Prodromidis, M.I. Karayannis, S.M. Tzouwara-Karayanni, Talanta, 2000, 52(3), 465-472.   DOI
25 X. Cao, J. Gao, Y. Ye, P. Wang, S. Ding, Y. Ye, H. Sun, Electroanalysis, 2016, 28(1), 140-144.   DOI
26 L.Y. Hu, S.L. Hu, J. Wu, Y.H. Li, J.L Zheng, Z.J. Wei, J. Liu, H.L. Wang, Y.S. Liu, H. Zhang, J Agr Food Chem, 2012, 60(35), 8684-8693.   DOI
27 K. Cheng, K. Ueno, T. Imamura, Handbook of Organic Analytical Reagents, Second ed., CRC Press, Boca Raton, FL, 1992.
28 Z.H. Xue, X.X. Fu, H.H. Rao, M.H. Ibrahim, L. Xiong, X.H. Liu, X.Q. Lu, Talanta, 2017, 174, 667-672.   DOI
29 I.M. Steinberg, A. Lobnik, O.S. Wolfbeis, Sens Actuators B, 2003, 90(1-3), 230-235.   DOI
30 A. Hennig, A. Hoffmann, H. Borcherding, T. Thiele, U. Schedler, U. Resch-Genger, Anal Chem, 2011, 83(12), 4970-4974.   DOI
31 J. Zhu, X.Y. Wu, D. Shan, P.X. Yuan, X.J. Zhang, Talanta, 2014, 130, 96-102.   DOI
32 S.M. Golabi, H.R. Zare, M. Hamzehloo, Electroanalysis, 2002, 14(9), 611-618.   DOI
33 S.Y. Deng, G.Y. Zhang, D. Shan, Y.H. Liu, K. Wang, X.J. Zhang, Electrochim Acta, 2015, 155, 78-84.   DOI
34 M.A. Chamjangali, H. Kouhestani, F. Masdarolomoor, H. Daneshinejad, Sens Actuators B, 2015, 216, 384-393.   DOI
35 Y. Wang, Colloids Surf B, 2011, 88(2), 614-621.   DOI
36 S. Ayaz, Y. Dilgin, Electrochim Acta, 2017, 258, 1086-1095.   DOI
37 J. Zhu, D.S. Chauhan, D. Shan, X.Y. Wu, G.Y. Zhang, X.J. Zhang, Microchim Acta, 2014, 181(7-8), 813-820.   DOI
38 S.M. Golabi, H.R. Zare, M. Hamzehloo, Microchem J, 2001, 69(2), 13-23.   DOI
39 Q.L. Sheng, Y. Shen, J.B. Zheng, H.F. Zhang, Sens Lett, 2012, 10(3-4), 1007-1011.   DOI
40 B. Fang, N. Zhang, W. Zhang, A. Gu, G.F. Wang, J Appl Polym Sci, 2009, 112(6), 3488-3493.   DOI
41 Q. Sheng, H. Yu, J. Zheng, Electrochim Acta, 2007, 52(25), 7300-7306.   DOI
42 M.R. Nateghi, A. Bagheri, A. Massoumi, M.H. Kazemeini, Synth Met, 1998, 96(3), 209-212.   DOI
43 G. Chen, S. Bi, L. Dai, M. Cao, Y. Chen, X. Wang, Anal Lett, 1999, 32, 865-883.   DOI
44 N.S. Lawrence, J. Davis, R.G. Compton, Talanta, 2000, 52(5), 771-784.   DOI
45 Y. Dilgin, B. Kizilkaya, B. Ertek, F. Isik, D.G. Dilgin, Sens Actuators B, 2012, 171, 223-229.   DOI