• Title/Summary/Keyword: cubic function

Search Result 291, Processing Time 0.03 seconds

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method (적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.

Accurate Prediction of the Pricing of Bond Using Random Number Generation Scheme (난수 생성기법을 이용한 채권 가격의 정확한 예측)

  • Park, Ki-Soeb;Kim, Moon-Seong;Kim, Se-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.19-26
    • /
    • 2008
  • In this paper, we propose a dynamic prediction algorithm to predict the bond price using actual data set of treasure note (T-Note). The proposed algorithm is based on term structure model of the interest rates, which takes place in various financial modelling, such as the standard Gaussian Wiener process. To obtain cumulative distribution functions (CDFs) of actual data for the interest rate measurement used, we use the natural cubic spline (NCS) method, which is generally used as numerical methods for interpolation. Then we also use the random number generation scheme (RNGS) to calculate the pricing of bond through the obtained CDF. In empirical computer simulations, we show that the lower values of precision in the proposed prediction algorithm corresponds to sharper estimates. It is very reasonable on prediction.

  • PDF

Understanding Variables and Enhancing the Level of Generalization in Problem Solving Utilized Dynamic Geometry Environment (동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구)

  • Ban, Eun Seob;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • In this study we have analyzed processes of generalization in which students have geometrically solved cubic equation $x^3+ax=b$, regarding geometrical solution of cubic equation $x^3+4x=32$ as examples. The result of this research indicate that students could especially re-interpret the geometric solution of the given cubic equation via dynamically understanding the variables in dynamic geometry environment. Furthermore, participants could simultaneously re-interpret the given geometric solution and then present a different geometric solutions of $x^3+ax=b$, so that the level of generalization could be improved. In conclusion, the study could provide useful pedagogical implications in school mathematics that the dynamic geometry environment performs significant function as a means of students-centered exploration when understanding variables and enhancing the level of generalization in problem solving.

An Image Interpolation by Adaptive Parametric Cubic Convolution (3차 회선 보간법에 적응적 매개변수를 적용한 영상 보간)

  • Yoo, Jea-Wook;Park, Dae-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.163-171
    • /
    • 2008
  • In this paper, we present an adaptive parametric cubic convolution technique in order to enlarge the low resolution image to the high resolution image. The proposed method consists of two steps. During the first interpolation step, we acquire adaptive parameters in introducing a new cost-function to reflect frequency properties. And, the second interpolation step performs cubic convolution by applying the parameters obtained from the first step. The enhanced interpolation kernel using adaptive parameters produces output image better than the conventional one using a fixed parameter. Experimental results show that the proposed method can not only provides the performances of $0.5{\sim}4dB$ improvements in terms of PSNR, but also exhibit better edge preservation ability and original image similarity than conventional methods in the enlarged images.

  • PDF

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.

Properties of VN Coatings Deposited by ICP Assisted Sputtering: Effect of ICP Power

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • Vanadium nitride (VN) coatings were deposited using inductively coupled plasma (ICP) assisted sputtering at different ICP powers. Microstructural, crystallographic and mechanical characterizations were performed by FE-SEM, AFM, XRD and nanoindentation. The results show that ICP has significant effects on coating's microstructure, structural and mechanical properties of VN coatings. With an increase in ICP power, coating microstructure evolved from a porous columnar structure to a highly dense one. Single- phase cubic (FCC) VN coatings with different preferential orientations and residual stresses were obtained as a function of ICP power. Average crystal grain sizes of single phase cubic (FCC) VN coatings were decreased from 10.1 nm to 4.0 nm with an increase in ICP power. The maximum hardness of 28.2 GPa was obtained for the coatings deposited at ICP power of 200 W. The smoothest surface morphology with Ra roughness of 1.7 nm was obtained in the VN coating sputtered at ICP power of 200 W.

Development of an Efficient Line Search Method by Using the Sequential Polynomial Approximation (순차적 다항식 근사화를 적용한 효율적 선탐색기법의 개발)

  • 김민수;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.433-442
    • /
    • 1995
  • For the line search of a multi-variable optimization, an efficient algorithm is presented. The algorithm sequentially employs several polynomial approximations such as 2-point quadratic interpolation, 3-point cubic interpolation/extrapolation and 4-point cubic interpolation/extrapolation. The order of polynomial function is automatically increased for improving the accuracy of approximation. The method of approximation (interpolation or extrapolation) is automatically switched by checking the slope information of the sample points. Also, for selecting the initial step length along the descent vector, a new approach is presented. The performance of the proposed method is examined by solving typical test problems such as mathematical problems, mechanical design problems and dynamic response problems.

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3

  • Paek, Dae Hyun;Shin, Yong Jin;Yi, Jinhee
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • We find modular equations of degree 3 to evaluate some new values of the cubic continued fraction $G(e^{-{\pi}\sqrt{n}})$ and $G(-e^{-{\pi}\sqrt{n}})$ for $n={\frac{2{\cdot}4^m}{3}}$, ${\frac{1}{3{\cdot}4^m}}$, and ${\frac{2}{3{\cdot}4^m}}$, where m = 1, 2, 3, or 4.

Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots (이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정)

  • Ko Jae-Pyung;Yun Jae-Mu;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2005
  • This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.