Browse > Article
http://dx.doi.org/10.5407/jksv.2022.20.3.074

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model  

Mirae, Kim (School of Mechanical Engineering, PNU)
Binqi, Chen (School of Aeronautics and Astronautics, University of Electronic Science and Technology of China)
Kyung Chun, Kim (Rolls-Royce and Pusan National University Technology Center in Korea)
Publication Information
Journal of the Korean Society of Visualization / v.20, no.3, 2022 , pp. 74-85 More about this Journal
Abstract
We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.
Keywords
Lattice Boltzmann Method; Cubic-Interpolated Pseudo-Particle; Single relaxation time; Advection-Diffusion; Convection-Diffusion Equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ponce Dawson, S., S. Chen, and G.D. Doolen, Lattice Boltzmann computations for reaction- diffusion equations. The Journal of Chemical Physics, 1993. 98(2): p. 1514-1523.
2 Sukop, M.C. and D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. 2010: Springer Publishing Company, Incorporated. 172.
3 Benzi, R., S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications. Physics Reports, 1992. 222(3): p. 145-197.   DOI
4 Chai, Z. and T.S. Zhao, Lattice Boltzmann model for the convection-diffusion equation. Physical Review E, 2013. 87(6): p. 063309.   DOI
5 van der Sman, R.G.M. and M.H. Ernst, Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices. Journal of Computational Physics, 2000. 160(2): p. 766-782.   DOI
6 Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow. Applied Mathematics and Computation, 2015. 265: p. 826-843.   DOI
7 Mussa, M.A., et al., Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 2011. 44(1): p. 162-168.   DOI
8 Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 2005. 28(11): p. 1171-1195.   DOI
9 Shan, X., Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Physical Review E, 1997. 55(3): p. 2780-2788.   DOI
10 McNamara, G. and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A: Statistical Mechanics and its Applications, 1993. 194(1-4): p. 218-228.   DOI
11 Zhaoli Guo, T.S. Zhao, Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity. Progress in Computational Fluid Dynamics, An International Journal, 2005. 5(1/2): p. 110-117.   DOI
12 Zhou, J.G., A lattice Boltzmann method for solute transport. International Journal for Numerical Methods in Fluids, 2009. 61(8): p. 848-863.   DOI
13 Safdari, A. and K.C. Kim, Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow. Computers & Mathematics with Applications, 2014. 68(5): p. 606-621.   DOI
14 Ring, A., et al., Sensitivity of Empirical Metrics of Rate of Absorption in Bioequivalence Studies. Pharmaceutical Research, 2000. 17(5): p. 583-588.   DOI
15 Deng, B., B.-C. Shi, and G.-C. Wang, A New Lattice Bhatnagar-Gross-Krook Model for the Convection-Diffusion Equation with a Source Term. Chinese Physics Letters, 2005. 22(2): p. 267.   DOI
16 Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. Journal of Computational Physics, 1985. 61(2): p. 261-268.   DOI
17 Gomberg, J., et al., Time-dependent earthquake probabilities. Journal of Geophysical Research: Solid Earth, 2005. 110(B5): p. n/a-n/a.
18 Ren, X., D. Yan, and C. Wang, Air-conditioning usage conditional probability model for residential buildings. Building and Environment, 2014. 81: p. 172-182.   DOI