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이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델

김미래* · 첸빙키** · 김경천†

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model

Mirae Kim*, Binqi Chen** and Kyung Chun Kim†

Abstract We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for 
the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme 
equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution 
function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann 
equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for 
simulating a variety of problems described by the CDE. All simulations were carried out using the 
BGK model, although another LB scheme based on a collision term like two-relation time or 
multi-relaxation time can be easily applied. To show quantitative agreement, the results of the 
proposed model are compared with an analytical solution.

Key Words : Lattice Boltzmann Method(격자볼츠만법), Cubic-Interpolated Pseudo-Particle(입방 보
간 유사 입자), Single relaxation time (단일 완화 시간), Advection-Diffusion(이류 확
산), Convection-Diffusion Equation(대류 확산 방정식)

1. Introduction  

In the last two decades, interest has gradually 

been increasing in using a modern numerical 

technique for understanding the physics of 

advection-diffusion or convection-diffusion transport 

phenomena. The Lattice Boltzmann method (LBM) 

lies between the finite difference algorithm and the 

lattice gas scheme because it can solve a microscopic 

kinetic equation, which has been useful in the field 

of fluid dynamics. The LBM has many advantages 

over other traditional techniques for obtaining 

solutions of partial differential equations, but the 

main benefits of this method are the ease of 

implementation, explicitness, and the capability of 

working in a parallel computation domain, which 

results in very fast codes because the physical 

interpretation of the scheme is well suited for 

implementation on massively parallel.(1-3)

In addition, the LBM has been extended to deal 

with complex geometries and solve the convection- 

diffusion equation.(4) Dawson et al. were the first 



이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델                        75

to use the LBM to simulate solvent flow instead 

of solving Navier-Stokes equations.(1) The capabilities 

of the LBM have been proven to simulate pure 

diffusion, homogeneous chemical reactions, and 

pattern formation by comparing with theoretical 

predictions of the macroscopic reaction-diffusion 

equations. Van der Sman and Ernst applied 

irregular lattices in the

LBM for convection-diffusion equation in order 

to improve the efficiency of the proposed model 

for solving the CDE for the concentration field.(5) 

They showed that the LBM had equivalent 

performance by comparing their scheme with 

numerical models based on N-S equations (like 

finite element and finite difference methods). 

However, a mass-conserving equilibrium distribution 

function cannot be obtained because the BGK 

scheme has only one relaxation time for each 

lattice vector.(6) In order to improve the stability 

and keep the accuracy of simulating anisotropic 

CDE problems, a few versions of collision have 

been proposed, as multi-relaxation time and 

two-relaxation time.(7-8)

Several LB models have been suggested for 

modeling the CDE, which can be correctly modeled 

under some idealistic assumptions (e.g., constant 

velocity). In general, all the models are placed in 

three classifications that can be used to resolve the 

convection-diffusion equation. The first is passive 

scalar models, in which the first component 

represents the fluid motion and the second 

component simulates a passive concentration field 

where the concentration field must satisfy the 

passive-scalar equation.(9) The second is multi-speed 

models, which can be managed with particle 

velocities linking to its nearest neighbor’s lattice. 

However, this method is not linearly stable in the 

limit of low transport coefficients.(10) The third 

type of LBM model of advective and diffusive 

transport is double-distribution functions, which 

are the most stable and accurate schemes.(11-12)

We propose a double-distribution function in the 

Cubic-Interpolated Pseudo-Particle LBM (CIP-LBM). 

This scheme presents the evolution of mass and 

momentum and the solute transport separately by 

using two different distribution functions. This model 

is computationally robust and applicable to problems 

with different Peclet numbers. In addition, this 

model directly simulates the change of transport of 

a dilute solute and involves a low-order moment 

that provides higher numerical stability than 

passive-scalar and multi-speed models. In order to 

validate the model for recovering the CDE, some 

numerical examples are presented to demonstrate 

the capability of the model with different 

microscopic velocities. CIP-LBM simulations for 

turbulent flow are possible. However, we have 

limited to the laminar flow because most of 

convection-diffusion problem is within laminar 

regime because the time scales for convection and 

diffusion should be equal.

2. Method

2.1 The LBM method

The Bhatnagar-Gross-Krook (BGK) LBM is based 

on two distribution functions that are applied for 

the momentum equation and solute transport. The 

Bhatnagar-Gross-Krook (BGK) collision model is 

used to model collisions as a statistical redistribution 

of momentum which locally drives the system 

toward equilibrium while conserving mass and 

momentum. However, one of the major problems 

when it related with the Boltzmann equation is the 

complicated nature of the collision integral. Collision 

operator represents the change in distribution 

function per unit time due to collision. In BGK, 

the main effect of the collision term is to bring the 

density distribution function closer to the equilibrium 

distribution. 

Macroscopic fluid quantities such as concentration 



76                                         김미래 · 첸빙키 · 김경천

and velocity are obtained by solving the momentum 

and solute distributions. In the double distribution 

function (DDF) approach, the first component is 

used for fluid flow, and the solute component has 

no velocity of its own. Therefore, the solute 

component is carried by the background fluid. The 

governing equation of the DDF model for the 

CDE is given by:

(1)

(2)

where ϕ1 is the distribution function of 

momentum for particle velocity c in the space 

direction x and time t. ϕ2 is the solute component 

in microscopic quantity, while i and j denote the 

microscopic velocities of the momentum and 

solute component, respectively.

In general, the LBM equation consists of two 

steps: a collision term (right-hand side) that describes 

the collision of the particle distribution function, 

and a streaming term (left-hand side), which 

represents the propagation of the distribution 

function after the collision term. The magnitude of 

an external force F(x, t) (such as gravity or the 

mass change caused by chemical reaction) can act 

either on the main fluid component in Eq. (1) or 

can be incorporated in a velocity term.(13) R(x, t) 

is the source term and can be found in some 

published works.(14) There are a few schemes of 

the collision term in the literature. However, the 

most efficient one is the BGK collision model 

because of its simplicity and low cost of 

computation. The BGK model has single relation 

time, and the equation is given by(13):

(3)

(4)

where ϕ is a scalar parameter such as species 

concentration or density at each local node. ϕ can 

be calculated as the summation of all distribution 

functions of component n.

(5)

(6)

 is the local equilibrium distribution function 

associated with time t and position x, and ωi is a 

weight coefficient that satisfies the following conditions:

(7)

We use three common terminologies to refer to 

the dimension of problem and the number of linkages: 

D1Q3, D2Q5, and D2Q9. For D1Q3, there are 

three lattice velocity vectors in one dimension ex =

[-1 0 1] associated with a unique linkage length 

and time step, and the weighting factors ωi are 4/6, 

1/6, and 1/6. D2Q5 or a four-bit velocity vector 

and D2Q9 or nine-microscopic velocities are very 

common for solving the CDE and fluid flow, 

respectively. D1Q3 model is for one dimensional 

flow model and two velocity vectors issued from 

the central node. D2Q5 model has four velocity 

vectors issued from the central nodes, one of the 

particle resides at the central node, hence its speed 

is zero, noted as c(0,0). The distribution function 

f1 and f2 move with c(1,0) and c(-1,0) (to the east 

and west), respectively, while f3 and f4 move with 

speed c(0,1)and c(0,-1)(to the north and south), 

respectively. Note that it is assumed that Δt = Δy 

=Δt. D2Q9 model is very common, especially for 
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Fig. 1. D2Q9 velocity vectors structure

solving fluid problems. Fig. 1 shows the D2Q9 

velocity vectors structure. It has high velocity vectors, 

with the central particle speed being zero. The 

speed are c(0,0), c(1,0), c(0,1), c(-1,0), c(0,-1), 

c(1,1), c(-1,1), c(-1,-1) and c(1,-1) for f0, f1, f2, 

f3, f4, f5, f6, f7, f8 and f9, respectively. The 

weight factors for corresponding distribution functions 

are 4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36 and 

1/36. Lattice Boltzmann method based on D2Q9 

lattice spaces with associated with the Bhatnagar- 

Gross-Krook (BGK) collision term is proposed to 

solve the convection-diffusion equation.

The speed vector and the weight factors for 

both lattice arrangements are:

D2Q5:

(8)

D2Q9:

(9)

Through Chapman-Enskohg expansion, we can 

obtain the diffusion coefficient D and shear stress 

ν in lattice units from the incompressible N-S 

equations associated with the single dimensionless 

relaxation time τn for each component(10):

(10)

2.2 The CIP model

During the last three decades, the Lattice 

Boltzmann method (LBM) has proved its capability 

to simulate a large variety of fluid flows. The 

CIP-LBM has many advantages over other 

traditional techniques for obtaining solutions of 

partial differential equations, but the main benefits 

of this method are the ease of implementation, 

explicitness, and the capability of working in a 

parallel computation domain, which results in very 

fast codes because the physical interpretation of 

the scheme is well suited for implementation on 

massively parallel computers. 

The CIP model is applied in the propagation 

step of the LBM after the collision term, and the 

analytical solution of the streaming term is:

(11)

where  is the post-collision distribution function 

at x and t. In order to describe the CIP model, 

one-dimensional lattice Boltzmann is explained in 

this section. The Linear equilibrium hyperbolic 

equation after applying the collision is:

(12)

where the constant micro-velocity (c) is assumed 

to be one. The novelty of applying CIP approximation 
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is that it can estimate the time evolution of both 

the distribution function (ϕ) and the derivative of 

the distribution function,  with 

spatial space (x). Also, the profile of each component 

is specialized at each node. With this restraint, 

arithmetical dispersion can be reduced significantly. 

The approximate functional form of the gradient 

of the quantities in the grid interval using cubic- 

polynomial interpolation is(15):

(13)

 

(14)

where  is the constant distance between 

two neighbor lattices (for example, ). 

The coefficients of αi and βi can be described in 

terms of the distribution function and its derivative as: 

(15)

(16)

Once all  and  are given, the value of the 

right-hand side of Eq. (11) is determined. Then, all 

the advected profiles of lattice propagation for all 

grid intervals can be obtained as: 

(17)

3. Results and discussion

In order to test the capability of the proposed 

model for CDE, some examples are presented. 

These include a conditional probability distribution 

function, bonded plane source with extended initial 

sources, 2D plane source, and the problem in the 

Poiseuille flow. Steady state is reached if the 

following convergent condition is fulfilled:

(18)

where Tollb is a tolerance set to 10-8. In order to 

test the accuracy of the proposed LBM model for 

the CDE, the relative error (Err) is defined as:

(19)

In simulations, various boundary conditions for 

the components are identical: bounce back, specified 

velocity, constant concentration, and an open 

boundary condition. 

The performance and robustness of developed 

CIP-LBM model were validated by comparison with 

known analytical solutions. They are one-dimensional 

(D1Q3) and two-dimensional mass diffusion problem 

(D2Q5). We first consider one-dimensional diffusion 

in a finite domain of length L and in which all the 

diffusing substance is initially concentrated in a 

plane. Then we extended to two-dimensional mass 

diffsion problem (D2Q5) with bounded domain. 

The Poiseuille flow is the last problem tested to 

demonstrate the capability of the present model for 

solute transport (D2Q9). For a better comparison, 

all the variables are normalized.

3.1 Time-dependent distribution function

Probability distributions are normally classified 

in relations of the probability density function (PDF). 
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However, a number of probability functions are 

used in applications such as earthquake prediction, 

medicine diffusion, and air-conditioning.(16-18) For a 

continuous function, the PDF is the probability 

that the variate has the value x. Since the 

probability at a single point is zero for continuous 

distributions, it is often expressed in terms of an 

integral between two points. The normal distribution 

is a very common probability distribution because 

it is important in statistics and in natural and 

social sciences. It is used to represent real-valued 

random variables with unknown distributions. The 

probability for an outcome cannot be estimated 

precisely in such cases, but instead, a probability 

for a range of outcomes can be determined. In 

order to apply the LBM, we assume the PDF is a 

time-dependent distribution function with variance 

σ^2 that is linear with respect to time:

(20)

(21)

where f(x) is a normal distribution, μ is the 

expectation of the distribution, and Nitr is the 

number of iterations. 

The cumulative distribution function (CDF) is 

another important distribution function that is used 

to determine the probability of a response being 

lower than a certain value, higher than a certain 

value, or between two values. The CDF gives the 

area under the probability density function up to a 

specified value and can be obtained from the PDF:

(22)

The inverse of the cumulative distribution function 

is the percent point function (PPF), which shows 

a distribution function for which a variable is less 

than or equal to x for a given x. Mathematically, 

this can be expressed as:

(23)

We used the proposed LBM model to obtain the 

normal distribution function (bell curve). We used 

(a)

(b)

(c)

Fig. 2. Probability density function of a normal 
distribution using LBM. Uniform initial concentration 
and mean value are zero.
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δx Errlb

7.70 × 10-3 1.56 × 10-4

9.10 × 10-3 1.35 × 10-3

1.11 × 10-2 8.68 × 10-3

1.43 × 10-2 4.21 × 10-3

2.00 × 10-2 1.64 × 10-2

the D1Q2 scheme (a one-dimensional model with 

two discrete velocities) and a periodic geometry 

size Llbm and compared it with a mathematical 

model. The simulations were suspended after 

reaching an expected variance values of 50, 140, 

and 220. The lattice Boltzmann parameters are τϕ 
= 1 and Llbm = 51, which is fine enough to derive 

accurate results. 

The results of the simulations are plotted against 

the appropriate analytical solutions in Fig. 2. The 

numerical results of scalar ϕ are in good agreement 

with the corresponding analytical solution. As shown 

in Fig. 2, a normal distribution with any deviation 

σ is symmetric around the point x = 0, which is 

also where the median and the mean of the distribution 

equal zero the simulation steps. Additionally, the 

center of the curve is located at x = μ, where the 

area under the curve in the range of x < μ has the 

same value as the area 

where x > μ. The symmetric shape of the 

distribution function is unimodal, and the maximum 

value of the probability distribution occurs at x = μ 

(Fig. 3). Fig. 4 shows the exact and numerical 

solutions of the cumulative distribution function (Fig. 

4(a)) and the percent point function of the PDF (Fig. 

4(b)) at times 150, 420, and 660 in lattice units. 

For quantitative evaluation of the accuracy, we 

calculated the relative errors for different lattice 

sizes of 1/50, 1/70, 1/90, 1/110, and 1/130, as shown in

Fig. 3. Probability distribution function at different 
initial concentrations.

(a)

(b)

Fig. 4. The cumulative distribution function (a) and 
the percent point function (b) at different variance.

Table 1. Fig. 5 and the table show that the CIP-LBM 

scheme for the CDE is second-order accurate in 

space, and smaller error is obtained with smaller 

lattice size. Also, the relative errors of the smaller 

lattice nodes increase faster in time, while there is no 

ostensible growth for smaller lattice size.

Table 1. Relative errors of the scalar variable ϕ with 
different lattice size



이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델                        81

Fig. 5. Relative errors of ϕ at different times

3.2 Bounded and unbounded plane sheet

In this example, we first consider one-dimensional 

diffusion in a finite domain of length L and in 

which all the diffusing substance is initially 

concentrated in a plane. In a bounded domain, the 

curve reflected at x = L/2 is reflected again at x =

0. The initial condition is that there is no flow of 

diffusing substance through the surface, which can 

be defined as: 

(24)

(25)

The analytical solution of the infinite domain in 

diffusion can be obtained by applying the Laplace 

transform method:

(26)

where ϕi is the uniform initial concentration, and 

the infinite sum of the error function represents a 

superposition of the original diffusion process at 

the boundaries.

The D1Q3 scheme of LBM was applied in 

simulations. The simulations were paused after 

reaching a chosen time, and the LBM parameters 

are τϕ = 1, ϕi = 0, and ϕ0 = 1. A lattice size of 1/100 

was fine enough to obtain accurate results. The 

numerical and exact solutions of the problem are 

presented in Fig. 6, which shows that CIP-LBM 

has good agreement with the analytical results. 

Fig. 6. Concentration distributions for a finite domain.

After validation, we carried out a simulation of 

the bounded domain in two dimensions using the 

D2Q5 scheme (a two-dimensional scheme with five 

velocity vectors). The LBM parameters are τϕ = 1, 

ϕi = 0, and ϕ0 = 1. The lattice size was set as 51

× 51, and an interpolated boundary condition was 

used in the horizontal and vertical boundaries. Fig. 

7–10 show images of the process for different 

times.
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Fig. 7. Concentration distributions for a finite domain, 
t = 400δt.

Fig. 8. Concentration distributions for a finite domain, 
t = 850δt.

Fig. 9. Concentration distributions for a finite domain, 
t = 2000δt.

Fig. 10. Concentration distributions for a finite domain, 
t = 4000δt.

3.3 Poiseuille flow

Poiseuille flow is the last problem tested to 

demonstrate the capability of the present model for 

solute transport. In this simulation, the flow rate is 

given by a pressure drop or an external force with 

constant density and acceleration in the x 

direction, along which gravity acceleration acts. 

The bottom and top walls are fixed, and developed 

flow passes through the channel from the left and 

goes out from the right boundary condition. The 

maximum velocity is u0 can occur in the center of 

the inlet boundary, while the velocity in the y 

direction is zero. Also, a constant concentration 

boundary condition is used for the top (ϕ1 = 1) and 

bottom (ϕ0 = 0) walls. In LBM, the bounce back 

boundary condition is used for the top and bottom 

walls, and a periodic boundary condition is applied 

for the left and right walls. The analytical solution 

of the Poiseuille flow is(4):

(28)

where H is the height of the channel, and ϕ0 and 

ϕ1 are the constant values of the scalar variable of 

concentration on the top and bottom walls. The 
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Peclet and Reynolds numbers are:

(29)

where the maximum velocity  that occurs in the 

center of the channel (H/2) in steady conditions is 

given by:

(30)

We applied the D2Q9 scheme to perform several 

simulations at different Reynolds and Peclet 

numbers. Fig. 11(a) and 11(b) show that the 

numerical results are in excellent agreement with 

the analytical solution. For quantitative study on 

the deviation between the proposed method and 

the analytical solution, statistical analysis related to 

the relative error was preformed, and the results 

are presented in Fig. 12(a) and 12(b). It is clear 

from these Figures that the accuracy of the 

simulation is higher for smaller lattice size and 

small Peclet number, and the numerical results of 

concentration perfectly match the exact solution.

4. Conclusions

We have proposed the CIP-LBM method for 

solving the CDE. We carried out different 

simulations of one-dimensional problems such as 

bounded domain and modeling the probability 

distribution function by using the LBM. The LBM 

has high capability to solve this type of problem 

because only the bounce back boundary condition 

is suitable for a diffusion process if no flux 

boundary is required. This advantage of using 

LBM is significant for diffusion simulation, 

especially in porous media, because applying 

specific solute boundary conditions is not required 

at solid-fluid interfaces, and using a bounce back 

(a)

(b)

Fig. 11. (a) Velocity profile for gravity-driven flow, 
Re = 10 and Pe =1. (b) Distributions of concentration 
along the y direction

boundary condition is very simple. 

A two-dimensional diffusion problem in the 

Poiseuille flow was also performed and compared 

with the corresponding analytical solutions. The 

relative errors of the concentration variable ϕ 
decreased with the increase of lattice size, but they 

have an opposite trend with increases in Peclet 

number. The validation exercises demonstrate that the 

present model has excellent agreement with the 

analytical solution, and CIP-LBM is expected to solve 

mass transfer problems with complex geometries.
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(a)

(b)

Fig. 12. (a) Relative error between different lattice 
size, Re = 10, Pe=1 (b) Relative error between 
different Peclet number, Re=10
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