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ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION

BY MODULAR EQUATIONS OF DEGREE 3

Dae Hyun Paek a, ∗, Yong Jin Shin b and Jinhee Yi c

Abstract. We find modular equations of degree 3 to evaluate some new values of

the cubic continued fraction G(e−π
√
n) and G(−e−π

√
n) for n = 2·4m

3
, 1

3·4m , and
2

3·4m , where m = 1, 2, 3, or 4.

1. Introduction

Let, for |q| < 1,

(a; q)∞ =
∞∏
n=0

(1− aqn)

and define

χ(q) = (−q; q2)∞.
The Ramanujan’s cubic continued fraction G(q), for |q| < 1, is defined by

G(q) =
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · · ,

which, in terms of χ(q), can be expressed as

G(q) = q1/3
χ(−q)
χ3(−q3)

.

As mentioned in [6], in the mid 1990s some interesting numerical values of G(q)

were determined for q = e−π
√
n and q = −e−π

√
n with a positive rational number

n. Berndt, Chan, and Zhang [3] found the values of G(e−π
√
n) for n = 2, 10, 22, 58

and G(−e−π
√
n) for n = 1, 5, 13, 37 by employing Ramanujan’s class invariants Gn

and gn such as

Gn = 2−1/4q−1/24χ(q) and gn = 2−1/4q−1/24χ(−q),
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where q = e−π
√
n. Chan [4] applied some reciprocity theorems for G(q) to compute

some numerical values of G(e−π
√
n) for n = 2

9 , 1, 2, 4 and G(−e−π
√
n) for n = 1, 5.

Meanwhile, in the early 2000s, Yi [7] used relations among G(q), Ramanujan-Weber

class invariants, and some parameters for eta function so that she systematically

found the values of G(e−π
√
n) for n = 1

2 ,
1
3 ,

4
3 ,

1
4 ,

1
9 ,

4
9 , 3, 6, 7, 8, 10, 12, 16, 28 and

G(−e−π
√
n) for n = 1

2 ,
1
3 ,

1
4 ,

1
9 , 2, 3, 4, 7.

Recently, in [8], the values of G(e−π
√
n) for n = 1

3 , 1, 4, 9 and G(−e−π
√
n) for

n = 1, 4, 9 were evaluated by applying some modular equations of degrees 3 and 9.

Paek and Yi [5] evaluated G(e−π
√
n) for n = 4

3 ,
16
3 ,

64
3 , 36, 144, 324 and G(−e−π

√
n)

for n = 4
3 ,

16
3 , 36 by employing modular equations of degrees 3 and 9. Moreover,

Paek and Yi [6] obtained the values of G(e−π
√
n) for n = 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
128 , 1, 8,

16, 32, 64, 128, 256 and G(−e−π
√
n) for n = 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
128 , 8, 16, 32, 64 by using

modular equations of degree 9. The next table summarizes some known values of

G(e−π
√
n) and G(−e−π

√
n).

n

G(e−π
√
n) 1

2 ,
1
3 ,

4
3 ,

16
3 ,

64
3 ,

1
4 ,

1
9 ,

2
9 ,

4
9 ,

1
16 ,

1
32 ,

1
128 ,

1, 2, 3, 4, 6, 7, 8, 9,
10, 12, 16, 22, 28, 32, 36, 58, 64,
128, 144, 256, 324

G(−e−π
√
n) 1

2 ,
1
3 ,

4
3 ,

16
3 ,

1
4 ,

1
8 ,

1
9 ,

1
16 ,

1
32 ,

1
128 ,

1, 2, 3, 4, 5, 7, 8, 9,
13, 16, 32, 36, 37, 64

In this paper, we further find some new values of G(e−π
√
n) for n = 8

3 ,
32
3 ,

128
3 ,

1
6 ,

1
12 ,

1
24 ,

1
48 ,

1
96 ,

1
192 ,

1
384 and the values of G(−e−π

√
n) for n = 8

3 ,
32
3 ,

1
24 ,

1
48 ,

1
96 ,

1
192 ,

1
384 by using modular equations of degree 3. In addition, we show how

to evaluate G(e−π
√
n) and G(−e−π

√
n) for n = 2·4m

3 , 1
3·4m , and 2

3·4m , where m is a

positive integer.

We now turn to definitions of Ramanujan’s theta functions φ and ψ, for |q| < 1,

such as

φ(q) =

∞∑
n=−∞

qn
2

and ψ(q) =

∞∑
n=0

qn(n+1)/2.

Transcribing in terms of (a; q)∞ they can be written as

φ(q) = (−q; q2)2∞(q2; q2)∞ and ψ(q) =
(q2; q2)∞
(q; q2)∞

.

Let (a)0 = 1 and (a)n = a(a+1)(a+2) . . . (a+n− 1) for each positive integer n.
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Definition 1.1 ([1, Definition 5.1.1]). Let a, b, and c be arbitrary complex numbers

except that c cannot be a non-positive integer. Then, for |z| < 1, the Gaussian or

ordinary hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn.

Definition 1.2 ([1, Definition 5.1.2]). The complete elliptic integral of the first kind

is defined for |k| < 1 by

(1.1) K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

.

The number k is called the modulus and the number k′ =
√
1− k2 is called the

complementary modulus.

Note that

K(k) =
π

2
2F1

(
1
2 ,

1
2 ; 1; k

2
)
=
π

2
φ2
(
e−πK′

K

)
,

where 0 < k < 1 and K ′ = K(k′).

We now turn to the definition of a modular equation of degree n given in [5, 6, 8,

9]. LetK, K ′, L, and L′ denote complete elliptic integrals of the first kind associated

with the moduli k, k′, l, and l′, respectively, where 0 < k < 1 and 0 < l < 1. Suppose

that

(1.2)
L′

L
= n

K ′

K
holds for some positive integer n. Then a modular equation of degree n is a relation

between the moduli k and l which is induced by (1.2). Set α = k2 and β = l2, then

we say that β has degree n over α. In terms of complete elliptic integrals of the first

kind and the terminology of hypergeometric functions, we conclude that a modular

equation of degree n is an equation relating α and β that is induced by

n
2F1

(
1
2 ,

1
2 ; 1; 1− α

)
2F1

(
1
2 ,

1
2 ; 1;α

) =
2F1

(
1
2 ,

1
2 ; 1; 1− β

)
2F1

(
1
2 ,

1
2 ; 1;β

) .

Let zn = φ2(qn) and m =
z1
zn

. Then we call m the multiplier.

We end this section by recalling the definitions of the parameterizations lk,n and

l′k,n for the theta function ψ from [5, 8, 9]. For any positive real numbers k and n,

define lk,n and l′k,n by, for q = e−π
√

n/k ,

(1.3) lk,n =
ψ(−q)

k1/4q(k−1)/8ψ(−qk)
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and

(1.4) l′k,n =
ψ(q)

k1/4q(k−1)/8ψ(qk)
.

For brevity, throughout this paper we write ln and l′n instead of l3,n and l′3,n,

respectively.

2. Preliminary Results

In this section, we introduce basic theta function identities as in [5, 6, 8] to find

modular equations of degree 3. Let k be the modulus as in (1.1). Set

(2.1) x := k2 = 1− φ4(−q)
φ4(q)

.

Then, by [1, Theorem 5.2.8], we have

(2.2) z := φ2(q) = 2F1

(
1
2 ,

1
2 ; 1; k

2
)
,

where

(2.3) q := exp

(
−π 2F1

(
1
2 ,

1
2 ; 1; 1− k2

)
2F1

(
1
2 ,

1
2 ; 1; k

2
) )

= exp

(
−πK(k′)

K(k)

)
.

Theorem 2.1 ([1, Theorem 5.4.2]). If x, q, and z are related by (2.1), (2.2), and

(2.3), then

(i) ψ(q) =

√
1

2
z

(
x

q

)1/8

,

(ii) ψ(q2) =
1

2

√
z

(
x

q

)1/4

.

The next result exhibits formulas for the values of G(e−π
√

n/3 ) and G(−e−π
√

n/3 )

in terms of l′n and ln, respectively.

Theorem 2.2 ([9, Theorem 6.2(v)]). For any positive real number n, we have

(i) G3(e−π
√

n/3 ) =
1

3 l′4n − 1
,

(ii) G3(−e−π
√

n/3 ) =
−1

3 l4n + 1
.

Theorem 2.3 ([7, Lemma 6.3.6]). We have

G(e−2π
√
n ) = −G(e−π

√
n )G(−e−π

√
n )

for any positive real number n.
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3. Modular Equations of Degree 3

In this section, we first derive a couple of modular equations of degree 3. We

then apply them to find a relation between l′n and l′4n and another relation between

ln and l′4n.

Theorem 3.1. If P =
ψ(q)

q1/4ψ(q3)
and Q =

ψ(q2)

q1/2ψ(q6)
, then

(3.1) P 4(Q2 − 1) = Q2(Q2 + 3).

Proof. By Theorem 2.1,

P =

√
z1
z3

(
α

β

)1/8

and Q =

√
z1
z3

(
α

β

)1/4

,

where β has degree 3 over α. Thus we deduce that√
z1
z3

=
P 2

Q
and

(
α

β

)1/8

=
Q

P
.

From the proof of Entry 5(iv) from [2, Chapter 19], we find that

β =
(m− 1)3(m+ 3)

16m
and α =

(m− 1)(m+ 3)3

16m3
,

where m =
z1
z3
. Hence we deduce that√

β

α
=
m(m− 1)

m+ 3
.

Transcribing the last equation in terms of P and Q, we have

1

Q2
=

P 4 −Q2

P 4 + 3Q2
.

The desired result now follows by rearranging the terms. �

Under the same hypothesis as Theorem 3.1, we have another modular equation

of the form

P 4 +
9

P 4
=

(
P

Q

)4

+

(
Q

P

)4

+ 8.

See [5, Theorem 3.1] for details.

Corollary 3.2. For every positive real number n, we have

(3.2) l′4n (
√
3 l′24n − 1) = l′24n(l

′2
4n +

√
3 ).
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Proof. Set q = e−π
√

n/3 in (1.4), then P = 31/4 l′n, Q = 31/4 l′4n from Theorem 3.1.

Rewriting (3.1) in terms of l′n and l′4n, we complete the proof. �

Theorem 3.3. If P =
ψ(−q)

q1/4ψ(−q3)
and Q =

ψ(q2)

q1/2ψ(q6)
, then

(3.3) P 4(Q2 + 1) = Q2(Q2 − 3).

Proof. Let R =
ψ(q)

q1/4ψ(q3)
. Then, by Theorem 3.1,

R4(Q2 − 1) = Q2(Q2 + 3).

Replacing q by −q, then R4, Q2 are converted into −P 4, −Q2, respectively. Now

substituting in the last equality R4 by −P 4 and Q2 by −Q2, we complete the proof.

�

Corollary 3.4. For every positive real number n, we have

(3.4) l4n(
√
3 l′24n + 1) = l′24n(l

′2
4n −

√
3 ).

Proof. The proof of this is similar to that of Corollary 3.2. �

4. Evaluations of l′n and ln

We now evaluate l′2·4m , l
′
1/4m and l′2/4m for m = 1, 2, and 3. We begin with l′22·4m

for m = 1, 2, and 3.

Theorem 4.1. We have

(i) l′28 = (1 +
√
2 )(

√
2 +

√
3 ),

(ii) l′232 = (1 +
√
2 )2

(
3
√
2 +

√
3 +

√
6 + 2

√
3 + 4

√
2 + 5

√
3
)
,

(iii) l′2128 =

√
3 (a− 1) +

√
(3a− 1)(a− 3)

2
,

where

a = (1 +
√
2 )4

(
3
√
2 +

√
3 +

√
6 + 2

√
3 + 4

√
2 + 5

√
3

)2

.

Proof. For (i), let n = 2 in (3.2) and put l′2 =
√

1 +
√
2 from [9, Theorem 3.4(iii)],

then we deduce that

(3 + 2
√
2 )(

√
3 l′28 − 1) = l′28 (l

′2
8 +

√
3 ).

Since l′28 > 1, by solving last equation for l′28 , we complete the proof.
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For (ii), by letting n = 8 in (3.2) and putting the value of l′28 from the result of

(i), we complete the proof. For (iii), repeat the same argument as in the proof of

(ii). �

Note that Corollary 3.2 and Theorem 4.1 show that l′22·4m can be evaluated for

m = 4, 5, 6, . . . . Next we evaluate l′41/4m for m = 1, 2, and 3.

Theorem 4.2. We have

(i) l′41/4 =
4 + 3

√
2

1 +
√
3

,

(ii) l′41/16 =
4 + 3

√
2 +

√
3(4 + 3

√
2 )(1 +

√
3 )

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )

,

(iii) l′41/64 =
b(b+

√
3 )√

3 b− 1
,

where

b =

√√√√√ 4 + 3
√
2 +

√
3(4 + 3

√
2 )(1 +

√
3 )

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )
.

Proof. For (i), letting n = 1
4 in (3.2) and putting l′1 =

√
1+

√
3√

2
from [9, Theorem

3.3(iii)], we deduce that(
−1 +

√
3(2 +

√
3 )

)
l′41/4 =

√
2 +

√
3

(√
3 +

√
2 +

√
3

)
.

The result follows after a brief calculation.

For (ii), letting n = 1
16 in (3.2) and putting the value of l′1/4 from the result of

(i), we complete the proof. For (iii), the proof of this is similar to that of (ii). �

Note that Corollary 3.2 and Theorem 4.2 show that l′41/4m can be evaluated for

m = 4, 5, 6, . . . . We now determine l′42/4m for m = 1, 2, 3, and 4.

Theorem 4.3. We have

(i) l′41/2 =
√
2 +

√
3,

(ii) l′41/8 =

√
3 +

√√
3 +

√
2

√
3−

√√
3−

√
2
,

(iii) l′41/32 =

√
3 +

√√
3 +

√
2 +

√
6 + 3

√
6
√
3− 6

−
√
3 +

√√
3−

√
2 +

√
6 + 3

√
6
√
3− 6

,
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(iv) l′41/128 =
c(c+

√
3 )√

3 c− 1
,

where

c =

√√√√√ √
3 +

√√
3 +

√
2 +

√
6 + 3

√
6
√
3− 6

−
√
3 +

√√
3−

√
2 +

√
6 + 3

√
6
√
3− 6

.

Proof. For (i), letting n = 1
2 in (3.2) and putting the value of l′2 =

√
1 +

√
2 from

[9, Theorem 3.4(iii)], we deduce that

(−1 +
√
3 +

√
6 ) l′41/2 = (1 +

√
2 )(1 +

√
2 +

√
3 ).

The result follows after an elementary calculation.

For (ii), letting n = 1
8 in (3.2) and putting the value of l′1/2 from the result of (i),

we obtain the required result. For (iii) and (iv), the proofs of these are exactly the

same as that of (ii). �

Note also that from Corollary 3.2 and Theorem 4.3, we can further determine

l′42/4m for m = 5, 6, 7, . . . .

We now determine l41/4m for m = 1, 2, and 3.

Theorem 4.4. We have

(i) l41/4 =
(1 +

√
3 )(1 +

√
3−

√
6 )

2 + 3
√
2 +

√
6

,

(ii) l41/16 =
4 + 3

√
2−

√
3(4 + 3

√
2 )(1 +

√
3 )

1 +
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )

,

(iii) l41/64 =
b(b−

√
3 )√

3 b+ 1
,

where

b =

√√√√√ 4 + 3
√
2 +

√
3(4 + 3

√
2 )(1 +

√
3 )

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )
.

Proof. For (i), let n = 1
4 in (3.4) and put the value of l′1 =

√
1+

√
3√

2
from [9, Theorem

3.3(iii)], then we find that(
3 +

√
3√

2
+ 1

)
l41/4 =

1 +
√
3√

2

(
1 +

√
3√

2
−
√
3

)
.

The result follows after a straightforward calculation.
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For (ii), letting n = 1
16 in (3.4) and putting the value of l′21/4 from the result of

Theorem 4.2(i), we complete the proof. For (iii), the proof of this is exactly the

same as that of (ii). �

Note also that we can further determine l41/4m for m = 4, 5, 6, . . . from Corollary

3.4 and Theorem 4.2.

5. Evaluations of G(q)

We are ready to evaluate G3(e−π
√
n) and G3(−e−π

√
n) for n = 2·4m

3 , 1
3·4m , and

2
3·4m , where m = 1, 2, 3, or 4. By taking cube roots of them, the corresponding

values of G(e−π
√
n) and G(−e−π

√
n) can easily be obtained. We first determine

G3(e−π
√
n) for n = 2·4m

3 , where m = 1, 2, and 3.

Theorem 5.1. We have

(i) G3(e−2
√
2π/

√
3 ) =

1

2(22 + 15
√
2 + 12

√
3 + 9

√
6 )

,

(ii) G3(e−4
√
2π/

√
3 ) = −1

4
+

3(1 +
√
2 +

√
6 )

2

(
6 +

√
2 + 3

√
6 + 2

√
3(3 + 4

√
2 + 5

√
3 )

) ,

(iii) G3(e−8
√
2π/

√
3 ) =

4

3
(√

3 (a− 1) +
√

(3a− 1)(a− 3)
)2

− 4
,

where

a = (1 +
√
2 )4

(
3
√
2 +

√
3 +

√
6 + 2

√
3 + 4

√
2 + 5

√
3

)2

.

Proof. For (i), letting n = 8 in Theorem 2.2(i) and putting the value of l′28 from

Theorem 4.1(i), we obtain the result.

For (ii) and (iii), apply the same argument as in the proof of (i). �

We next determine G3(−e−π
√
n) for n = 2·4m

3 , where m = 1 and 2.

Corollary 5.2. We have

(i) G3(−e−2
√
2π/

√
3 )

=

(9− 7
√
2− 9

√
3 + 6

√
6 )

(
5 + 3

√
3−

√
6(3 + 4

√
2 + 5

√
3 )

)
(−24 + 17

√
2 )

(
1 + 3

√
2 + 3

√
3 +

√
6(3 + 4

√
2 + 5

√
3 )

) ,
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(ii) G3(−e−4
√
2π/

√
3 )

=
4− 3(2 +

√
2 )4

(
3
√
2 +

√
3 +

√
6 + 2

√
3 + 4

√
2 + 5

√
3 )
)2

3
(√

3 (a− 1) +
√
(3a− 1)(a− 3)

)2
− 4

,

where

a = (1 +
√
2 )4

(
3
√
2 +

√
3 +

√
6 + 2

√
3 + 4

√
2 + 5

√
3

)2

.

Proof. The results are immediate consequences of Theorem 2.3 and Theorem 5.1. �

We now evaluate G3(e−π
√
n) and G3(−e−π

√
n) for n = 1

3·4m , where m = 1, 2, and

3.

Theorem 5.3. We have

(i) G3(e−π/2
√
3 ) =

1 +
√
3

11 + 9
√
2−

√
3
,

(ii) G3(e−π/4
√
3 ) =

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )

13 + 9
√
2 +

√
3 + 2

√
3(4 + 3

√
2 )(1 +

√
3 )

,

(iii) G3(e−π/8
√
3 ) =

√
3 b− 1

(
√
3 b+ 1)2

,

where

b =

√√√√√ 4 + 3
√
2 +

√
3(4 + 3

√
2 )(1 +

√
3 )

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )
.

Proof. For (i), letting n = 1
4 in Theorem 2.2(i) and putting the value of l′41/4 from

Theorem 4.2(i), we complete the proof.

For (ii) and (iii), repeat the same process as in the proof of (i). �

Theorem 5.4. We have

(i) G3(−e−π/2
√
3 ) =

3 +
√
2 +

√
3

6− 7
√
2 + 2

√
3− 3

√
6
,

(ii) G3(−e−π/4
√
3 ) = −

1 +
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )

13 + 9
√
2 +

√
3− 2

√
3(4 + 3

√
2 )(1 +

√
3 )

,

(iii) G3(−e−π/8
√
3 ) = −

√
3 b+ 1

(
√
3 b− 1)2

,
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where

b =

√√√√√ 4 + 3
√
2 +

√
3(4 + 3

√
2 )(1 +

√
3 )

−1−
√
3 +

√
3(4 + 3

√
2 )(1 +

√
3 )
.

Proof. For (i), letting n = 1
4 in Theorem 2.2(ii) and putting the value of l41/4 from

Theorem 4.4(i), we complete the proof.

For (ii) and (iii), employing Theorem 2.2(ii) and Theorem 4.4(ii) and (iii), we

finish the proof. �

Note that we easily obtain Theorem 5.4(ii) and (iii) by Theorem 2.3 and Theorem

5.3.

We now find G3(e−π
√
n) for n = 2

3·4m , where m = 1, 2, 3, and 4.

Theorem 5.5. We have

(i) G3(e−π/
√
6) =

1

−1 + 3(
√
2 +

√
3 )

,

(ii) G3(e−π/2
√
6) =

3 +
√
2−

√
3

9−
√
2 +

√
3 + 3

√
6 + 6

√
3
,

(iii) G3(e−π/4
√
6) =

−
√
3 +

√√
3−

√
2 +

√
6 + 3

√
6
√
3− 6

4
√
3 +

√√
3 +

√
2−

√√
3−

√
2 + 2

√
6 + 3

√
6
√
3− 6

,

(iv) G3(e−π/8
√
6) =

√
3 c− 1

(
√
3 c+ 1)2

,

where

c =

√√√√√ √
3 +

√√
3 +

√
2 +

√
6 + 3

√
6
√
3− 6

−
√
3 +

√√
3−

√
2 +

√
6 + 3

√
6
√
3− 6

.

Proof. For (i), letting n = 1
2 in Theorem 2.2(i) and putting the value of l′41/2 from

Theorem 4.3(i), we complete the proof.

The proofs of (ii), (iii), and (iv) are similar to that of (i). �

We lastly use Theorem 2.3 and Theorem 5.5 to find G3(−e−π
√
n) for n = 2

3·4m ,

where m = 2, 3, and 4.

Corollary 5.6. We have

(i) G3(−e−π/2
√
6) =

9−
√
2 +

√
3 + 3

√
6 + 6

√
3

2(3− 4
√
2− 5

√
3 )

,
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(ii) G3(−e−π/4
√
6)

=

(3 +
√
2−

√
3)

(
4
√
3 + 3

√√
3 +

√
2−

√√
3−

√
2 + 2

√
6 + 3

√
6
√
3− 6

)
(
9−

√
2 +

√
3 + 3

√
6 + 6

√
3
)(√

3−
√√

3−
√
2−

√
6 + 3

√
6
√
3− 6

) ,

(iii) G3(−e−π/8
√
6)

=

(√
3−

√√
3−

√
2−

√
6 + 3

√
6
√
3− 6

)
(
√
3 c+ 1)2(

4
√
3 +

√√
3 +

√
2−

√√
3−

√
2 + 2

√
6 + 3

√
6
√
3− 6

)
(
√
3 c− 1)

,

where

c =

√√√√√ √
3 +

√√
3 +

√
2 +

√
6 + 3

√
6
√
3− 6

−
√
3 +

√√
3−

√
2 +

√
6 + 3

√
6
√
3− 6

.
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