• Title/Summary/Keyword: cubic function

Search Result 291, Processing Time 0.021 seconds

Modified Cubic Convolution Interpolation for Low Computational Complexity

  • Jun, Young-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1259-1262
    • /
    • 2006
  • In this paper, we propose a modified cubic convolution interpolation for the enlargement or reduction of digital images using a pixel difference value. The proposed method has a low complexity: the number of multiplier of weighted value to calculate one pixel of a scaled image has seven less than that of cubic convolution interpolation has sixteen. We use the linear function of the cubic convolution and the difference pixel value for selecting interpolation methods. The proposed method is compared with the conventional one for the computational complexity and the image quality. The simulation results show that the proposed method has less computational complexity than one of the cubic convolution interpolation.

  • PDF

Design of an Image Interpolator for Low Computation Complexity

  • Jun, Young-Hyun;Yun, Jong-Ho;Park, Jin-Sung;Choi, Myung-Ryul
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.153-158
    • /
    • 2006
  • In this paper, we propose an image interpolator for low computational complexity. The proposed image interpolator supports the image scaling using a modified cubic convolution interpolation between the input and output resolutions for a full screen display. In order to reduce the computational complexity, we use the difference in value of the adjacent pixels for selecting interpolation methods and linear function of the cubic convolution. The proposed image interpolator is compared with the conventional one for the computational complexity and image quality. The proposed image interpolator has been designed and verified by Verilog HDL(Hardware Description Language). It has been synthesized using the Xilinx VirtexE FPGA, and implemented using an FPGA-based prototype board.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

Analysis of Current Distribution on Cylinders with End Cap (끝단면에 ?을 갖는 원통주의 전류분포 해석)

  • 이강호;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.879-885
    • /
    • 1990
  • An intergral equation is derived for surface current distribution of cylinders with end cap using quasistatic approximation method. The moment method is applied for numerical solution. Point matching method using Cubic B-spline function as a basis function, delta function as a weighting function is applied for moment method. And also, the influencial relation in accordance with structural variation is analized in case of spheroidal end up cap type and flat type.

  • PDF

Implementation of a Modified Cubic Convolution Scaler for Low Computational Complexity (저연산을 위한 수정된 3차 회선 스케일러 구현)

  • Jun, Young-Hyun;Yun, Jong-Ho;Park, Jin-Sung;Choi, Myung-Ryul
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.838-845
    • /
    • 2007
  • In this paper, we propose a modified cubic convolution scaler for the enlargement or reduction of digital images. The proposed method has less computational complexity than the cubic convolution method. In order to reduce the computational complexity, we use the linear function of the cubic convolution and the difference value of adjacent pixels for selecting interpolation methods. We employ adders and barrel shifts to calculate weights of the proposed method. The proposed method is compared with the conventional one for the computational complexity and the image quality. It has been designed and verified by HDL(Hardware Description Language), and synthesized using Xilinx Virtex FPGA.

  • PDF

On the Selection of FCC and BCC Lattices in Poly(styrene-b-isoprene) Copolymer Micelles

  • Bang, Joona;Lodge, Timothy P.
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Spherical micelles of poly(styrene-b-isoprene) (SI) diblock copolymers in selective solvents have been reported to pack onto either face-centered cubic (fcc) or body-centered cubic (bcc) lattices. The selection rule for fcc and bcc lattices has been understood in terms of the intermicellar potentials, and they have been quantified using the ratio of the corona layer thickness to the core radius, $L/R_c$, as suggested by McConnell and Gast. In order to test the validity of the McConnell-Gast criterion, this study compared the $L/R_c$ values from various solutions i.e. nine SI copolymers in several different selective solvents. The McConnell-Gast criterion was not found to be a determining factor, even though it could explain the fcc/bcc selection qualitatively. From the phase diagrams, the transition between fcc and bcc phases was also considered as a function of concentration and temperature, and their physical mechanisms are discussed based on the recent mean-field calculation reported by Grason.

AN IMPROVED EXPONENTIAL REGULA FALSI METHODS WITH CUBIC CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

  • Ibrahim, S.A. Hoda
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1467-1476
    • /
    • 2010
  • The aim of this paper is to propose a cubic convergent regula falsi iterative method for solving the nonlinear equation f(x) = 0, where f : [a,b] $\subset$ R $\rightarrow$ R is a continuously differentiable. In [3,6] a quadratically convergent regula falsi iterative methods for solving this nonlinear equations is proposed. It is shown there that both the sequences of diameters and iterative points sequence converge to zero simultaneously. So The aim of this paper is to accelerate further the convergence of these methods from quadratic to cubic. This is done by replacing the parameter p in the iteration of [3,5,6] by a function p(x) defined suitably. The convergence analysis is carried out for the method. The method is tested on number of numerical examples and results obtained shows that our methods are better and more effective and comparable to well-known methods.

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF

INCOMPRESSIBLE FLOW COMPUTATIONS BY HERMITE CUBIC, QUARTIC AND QUINTIC STREAM FUNCTIONS (Hermite 3차, 4차 및 5차 유동함수에 의한 비압축성 유동계산)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.49-55
    • /
    • 2009
  • This paper evaluates performances of a recently developed divergence-free finite element method based on Hermite interpolated stream functions. Velocity bases are derived from Hermite interpolated stream functions to form divergence-free basis functions. These velocity basis functions constitute a solenoidal function space, and the simple gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into a solenoidal and an irrotational parts, and the decoupled Navier-Stokes equations are projected onto their corresponding spaces to form proper variational formulations. To access accuracy and convergence of the present algorithm, three test problems are selected. They are lid-driven cavity flow, flow over a backward-facing step and buoyancy-driven flow within a square enclosure. Hermite interpolation functions from cubic to quintic are chosen to run the test problems. Numerical results are shown. In all cases it has shown that the present method has performed well in accuracies and convergences. Moreover, the present method does not require an upwinding or a stabilized term.

  • PDF

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF