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An Alternative Point—Matching Technique for
Fredholm Integral Equations of Second Kind
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Abstract

An alternative technique for the numerical solution of Fredholm integral equations of
second kind is presented. The approximate solution is obtained by fitting the data in mixed
form at knots in the region of the problem. To decrease the error in the numerical solution,
cubic B-spline functions which are twice continuously differentiable at knots are employed
as basis function. For a given example, the results of this technique are compared with those
of Moment method employing pulse functions for basis function and delta functions for
test function and found to be in good agreement.

I. Introduction

Numerical methods for solving the bound-
ary-value problems and eigenvalue problems are
employed in various electromagnetic field
problems.

Differential, integral, and integro-differential
equations can be solved with suitable numerical
techniques.
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Integral equations appear in their own right,
and besides they often appear as alternative
formulation of problems in differential equa-
tions.

Moment method which has many advantages,
that is, simple software, short CPU time, and
less core memory capability, has been exten-
sively utilized to slove various field problems.

Usually, pulse expansion and delta testing
functions are employed in this procedure, due
to the simplicity of the resulting expressions.

The error resulting from the fact that the
discrete information of knots are responsible
for the entire information of the region of
interest can be reduced by increasing the
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number of knot points, but this can lower the
speed of convergence to exact solution, '"?

To decrease the resulting error, various
numerical techniques  are  considered. >
With suitable expansion function, we can
minimize the error.

Spline interpolation by means of the spline
functions is a relatively new technique for
field problems. %

Davis treated properties of spline function
in solving electromagnetic field problem.*

Chua presented interpolation technique for
CAD of microstrip by using cubic B-spline
function.'®

This paper presents an alternative point-
matching technique for solving Fredholm
integral equations of second kind, which
arise from the ground wave propagation pro-
blems'”, the magnetic field integral equation
formulations for a perfectly conducting scatter-
er and the integral equation formulations for
the body of revolution with extended boundary
condition '*', by using mixed point-matching
technique, and used cubic B-spline function as
basis function to reduce the error of the appro-
ximation.

We present the cases of convergence to the
exact solution with respect to the length of
elements and the coordinate of match points.

To prove the proposed algorithm, the results
for a given problem of this algorithm are
compared to those of Moment method.

II. Algorithm

Consider the following Fredholm integtral
equation of second kind;

Woy+a [P k(e sHu(s)ds = £(0) )
where u(t) is the unknown function to be
approximated defined on the interval T=[a,b],
f(t) is a given excitation function on T, k (t,s)
is a given kernel function which may or may
not be singular, and « is a given constant. We
can suppose an approximate solution of (1)
over N-dimensional subspace as follow;

N
M= Ta ¥ (2)

where ¥;(1) is i-th linear independent basis
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function and a; is its coefficient to be obtained.
In this paper, we use cubic B-spline function as
basis function.

Thus the approximate solution (2) has error

N b
C(t)=f(t)—i§13'[\bi(t)—a fa k(t,s)l]/i(s) ds] (3) -

1

We can apply to equation (3) with the condi-

tion M = 0 in the interior region of T;
t
g 0 Y. (t b 2 k ds] =
23 [& i )—afa e (1,) Yy(s) ds] =
t € (a,b) 4)
Bf (1) 2

ot

and with the condition e(t)=0 on the end points
of T

N b
Z 2, [V (00 [, k(t,s) Yy(s) ds]=f(1) t=a,b (5)
i=1

Combining equation (4) and (5), we can
obtain matrix equation by using point matching
technique at (N-2) knots in the interior region
and 2 knots on end points of T

SD=L (6)

where 9 b

Sij= [a\pj(t)“a fa

0

gk(t,s)wj(s)ds] It=titi€ (a,b)
b

Si= V(0 f, k(ts) Yi(s) ds) |t=ti t=ab

D=1[a,a;a3...... an|
of(t) ;
%= 5;(0 =, t€@b)
!i = f(t) |t=t tl = a.,b
i

From equation (2) and (6), we can obtain
the approximated solution of the problem (1).
This procedure can be straightforwardly
expanded to multidimensional field problem.

III. Cubic B-Spline Function

An extensive summary of its algebraic pro-
perties can be found in reference.'*

On interpolation problem, global inter-
polation with a given set of data on the entire
region give rise to ‘Runge-Meray phenomenon
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which has a property of enormous error near
the end point.

The error can be reduced by using piecewise
polynomial and further reduced by fitting
datas at Knots to be twice continuously differ-
entiable.

B-spline function was first introduced by
Schoenberg and widely used in curve fitting
and surface fitting with advantages of low error
and rapid convergence.

Cubic B-spline function satisfies smoothness
constraints;

u(])(ti)=u(-]) (1)j=0,12 1<i <N (7)
where superscript (j) is j-th derivative and t is
the i-th knot point. To define the full set of
cubic B-spline on T=[a,b], it is necessary to
introduce six additional knots which are out
side of T such that

t1<t2 <t3 <t4
<b =ty <tg, <ty

a<<

N 8)
Thus, we can obtain unique interpolation
function u(t) over N-dimensional subspace
with N-3 elements.
Multi-dimensional cubic B-spline function
can be obtained as a tensor product from the
respective coordinates.

IV. Example And Computer Program

To verify the proposed algorithm, we choose
the integral equation as follow;

0.5
u(t) — « '(fmk(t,s) u(s)yds=sint 9)

85

where

a=045
K(ts) = [imgy 1197

The computed results of the example are
given in table 1. The basis functions for the
Moment method are the puise function com-
pared to the cubic B-spline function for the
proposed technique.

The flowchart for the computer prbgram
is given in Fig. 1. The size of matrix is m*m
for Moment method and (m+3)+(m+3) for the
proposed technique with m elements.

The integration was performed by the 4-
point Gauss-Legendre method with the single
precision.

)

SOLVE MATRIX
EQUATION

INITIALIZE

DEFINE CUBIC
B SPLINE
FUNCTION

INTERPOLATION

COMPUTE MATRIX
ELEMENT

1)

Fig. 1. Flowchart for the proposed technique.

Table 2 refers to the cases of convergence to
the exact solution with respect to the Length

Table 1. Computed results.

number of \
0 0.0 0.2 0.3 0.4 0.5

method elements
11 ~2.711e-11| .09828 | .19522 | .28959 | .38031 | .46651
Moment 41 1.397¢-10] .10548 | .20932 | .30999 | .40620 | .49697
91 6.668¢-10| .10693 | .21214 | .31406 | .41135 | .50299
propesed 3 8.482e-8| .10812 | .21441 | 31728 | .41553 | .50799
technique 5 6.874e-7| .10811 | .21443 | 31737 | .41555 | .50792
exact 0 10811 | .21444 | 31738 | .41555 | .50791

(504)



86

of elements and the position of match points.
Fig. 2 illustrate the element length and match
point for the case of 2 in table 2.

Table 2. The cases of convergence.

case element match point
1 equal equal
2 arbitrary equal
3 equal symmetric
4 arbitrary symmetric
5 symmetric symmetric

8
4 MATCH POINT
ELEMENT

-—ro
-—c

1 2 3 4 5

Fig. 2. Allocation of elements and match points.

ERROR
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Fig. 3. % error v.s. matrix size.

Y. Conclusion

A new algorithm for the numerical solution
of Fredholm integral equations of second kind
is proposed.

For a given example, the computed results
of this technique are compared to the those
of Moment method employing pulse and
delta function for basis and test function,
respectively.

The following items are verified.

1. Reduction of CPU time

2. Low memory capability

3. Rapid convergency

The possible cases of convergence of this
technique are summalized with respect to the
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element length and the position of match
points.
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