• 제목/요약/키워드: crystalline silicon photovoltaic cells

검색결과 81건 처리시간 0.031초

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

레이저를 이용한 결정질 실리콘 태양전지의 Double Texturing 제조 및 특성 (Characteristics of Double Texturization by Laser and Reactive Ion Etching for Crystalline Silicon Solar Cell)

  • 권준영;한규민;최성진;송희은;유진수;유권종;김남수
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.649-653
    • /
    • 2010
  • In this paper, double texturization of multi crystalline silicon solar cells was studied with laser and reactive ion etching (RIE). In the case of multi crystalline silicon wafers, chemical etching has problems in producing a uniform surface texture. Thus various etching methods such as laser and dry texturization have been studied for multi crystalline silicon wafers. In this study, laser texturization with an Nd:$YVO_4$ green laser was performed first to get the proper hole spacing and $300{\mu}m$ was found to be the most proper value. Laser texturization on crystalline silicon wafers was followed by damage removal in acid solution and RIE to achieve double texturization. This study showed that double texturization on multi crystalline silicon wafers with laser firing and RIE resulted in lower reflectance, higher quantum yield and better efficiency than that process without RIE. However, RIE formed sharp structures on the silicon wafer surfaces, which resulted in 0.8% decrease of fill factor at solar cell characterization. While chemical etching makes it difficult to obtain a uniform surface texture for multi crystalline silicon solar cells, the process of double texturization with laser and RIE yields a uniform surface structure, diminished reflectance, and improved efficiency. This finding lays the foundation for the study of low-cost, high efficiency multi crystalline silicon solar cells.

Improved Understanding of LeTID of Single-crystalline Silicon Solar Cell with PERC

  • Kim, Kwanghun;Baik, Sungsun;Park, Jaechang;Nam, Wooseok;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • 제6권4호
    • /
    • pp.94-101
    • /
    • 2018
  • Light elevated temperature induced degradation (LeTID) was noted as an issue in multi-crystalline silicon solar cells (MSSC) by Ram speck in 2012. In contrast to light induced degradation (LID), which has been researched in silicon solar cells for a long time, research about both LeTID and the mechanism of LeTID has been limited. In addition, research about LeTID in single-crystalline silicon solar cells (SSSC) is even more limited. In order to improve understanding of LeTID in SSSC with a passivated emitter rear contact (PERC) structure, we fabricated four group samples with boron and oxygen factors and evaluated the solar cell characteristics, such as the cell efficiency, $V_{oc}$, $I_{sc}$, fill factor (FF), LID, and LeTID. The trends of LID of the four group samples were similar to the trend of LeTID as a function of boron and oxygen.

반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구 (Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching))

  • 박석기;이정인;강민구;강기환;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.455-460
    • /
    • 2016
  • A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).

결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거 (Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells)

  • 정명상;강민구;이정인;송희은
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

결정질 실리콘 태양광발전모듈 인증 실적의 시계열 분석 (Time Series Analysis of Crystalline Silicon Photovoltaic Module Certification Results)

  • 한윤철;김익표;강규영
    • 한국태양에너지학회 논문집
    • /
    • 제37권3호
    • /
    • pp.33-45
    • /
    • 2017
  • Crystalline silicon photovoltaic module certification began in 2007. "Renewable Energy Equipment Certification Scheme" was implemented until July 28, 2015. Then, the scheme was changed to "KS Certification Scheme" since July 29, 2015. A total of 2,331 models have been certified by 2016. The proportion of multi crystalline modules in certified products is higher than that of mono crystalline modules, and Korean modules account for 78% of the total certification modules. Chinese solar cells account for the highest percentage of 40% of the total modules and 62.4% of modules certified in 2016 use Chinese solar cells. With the development of technology, module power is continuously increasing, and efficiency is also rising. The average efficiency of mono crystalline module is 0.74% higher than the average of multi crystalline module. As a result of comparing domestic module with Chinese module, the highest efficiency of mono crystalline module and multi crystalline module and the average efficiency of mono crystalline module are higher than those of Chinese module, but the average efficiency of multi crystalline module is similar to that of Chinese module.

Silicon Solar Cells

  • Yi, Jun-Sin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2007년도 제32회 학술대회 초록집
    • /
    • pp.44-44
    • /
    • 2007
  • PDF

실리콘 태양전지 (Brief Review of Silicon Solar Cells)

  • 이준신
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.161-166
    • /
    • 2007
  • 태양광발전이란 태양에너지를 직접 전기 에너지로 변환시키는 것이다. 지난 5년 동안 태양광발전은 세계적으로 높은 성장률을 보여 왔다. 특히 2006년에는 30%, 이상의 성장을 가져왔으며 앞으로 20년 동안 평균 생산 성장률은 매년 27%-34%가 될 것으로 예상하고 있다. 현재까지는 태양광발전을 이용해 생산된 전력의 가격은 기존 전력발전의 가격보다 높지만 태양광 기술의 발전과 효율의 향상으로 점점 그 가격이 떨어지고 있다. 뿐만 아니라 태양전지용의 실리콘 기판의 대량생산은 점점 더 태양전지의 가격 저하를 가져오고 있다. 태양전지의 변화효율의 한계는 30%이다. 현재에는 결정질 실리콘 태양전지가 주를 이루고 있지만 미래에는 박막 실리콘 태양전지가 주도를 이룰 것이다. 2030년에는 박막 태양전지가 90%이상을 이루고 결정질 태양전지는 10% 이하로 떨어질 것을 예상하고 있다. 성균관대학교에서는 결정질 실리콘 태양전지의 저가화와 고효율화를 주 연구로 수행하고 있다. 현재 성균관대학교에서는 스크린 프린트를 이용해서 16% 이상의 다결정 실리콘 태양전지와 17% 이상의 단결정 실리콘 태양전지를 성공적으로 제작하였다. 제 1세대에서 다음 세대의 태양전지 발전의 과정은 새로운 접근법으로 확대되지만 여전히 실리콘이 지금까지 주된 재료로 쓰이고 있다. 2010년까지 이러한 기술들에 대한 격차는 여전히 있지만 태양광발전을 통한 전력생산의 가격은 60 cent/watt 정도로 예상하고 있다. 태양광발전은 청정에너지로서 재생불가능 하고 고갈되어가고 환경오염을 일으키는 다른 에너지와 비교하여 점점 대체에너지로서의 자리를 확립해 가고 있다.

결정질 실리콘 태양전지 표면 역 피라미드 구조의 특성 분석 (Influence of Inverted Pyramidal Surface on Crystalline Silicon Solar Cells)

  • 양지웅;배수현;박세진;현지연;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.86-90
    • /
    • 2018
  • To generate more current in crystalline silicon solar cells, surface texturing is adopted by reducing the surface reflection. Conventionally, random pyramid texturing by the wet chemical process is used for surface texturing in crystalline silicon solar cell. To achieve higher efficiency of solar cells, well ordered inverted pyramid texturing was introduced. Although its complicated process, superior properties such as lower reflectance and recombination velocity can be achieved by optimizing the process. In this study, we investigated optical and passivation properties of inverted pyramid texture. Lifetime, implied-Voc and reflectance were measured with different width and size of the texture. Also, effects of chemical rounding at the valley of the pyramid were observed.

결정질 실리콘 태양전지에 적용될 스크린 프린팅 기술 개발 동향 : 리뷰 (Screen Printing Method on Crystalline Silicon Solar Cells : A Review)

  • 전영우;장민규;김민제;이준신;박진주
    • Current Photovoltaic Research
    • /
    • 제10권3호
    • /
    • pp.90-94
    • /
    • 2022
  • The screen-printing method is the most mature solar cell fabrication technology, which has the advantage of being faster and simpler process than other printing technology. A front metallization printed through screen printing influences the efficiency and manufacturing cost of solar cell. Recent technology development of crystalline silicon solar cell is proceeding to reduce the manufacturing cost while improving the efficiency. Therefore, screen printing requires process development to reduce a line width of an electrode and decrease shading area. In this paper, we will discuss the development trend and prospects of screen-printing metallization using metal paste, which is currently used in manufacturing commercial crystalline silicon solar cells.