Browse > Article
http://dx.doi.org/10.21218/CPR.2018.6.1.001

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review  

Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University)
Lee, Youn-Jung (College of Information and Communication Engineering, Sungkyunkwan University)
Balaji, Nagarajan (Department of Energy Science, Sungkyunkwan University)
Cho, Young Hyun (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Current Photovoltaic Research / v.6, no.1, 2018 , pp. 1-11 More about this Journal
Abstract
Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.
Keywords
Diamond wire sawing; mc-Si; Acid Etching; Nano Texturing; Future Texturing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Abbott, J. Cotter, "Optical and electrical properties of laser texturing for high effciency solar cells", Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 225-235, 2006.   DOI
2 L. A. Dobrazanski, A. Drygala, "Surface texturing of multi-crystalline silicon solar cells", Journal of Achievements in Materials and Manufacturing engineering, Vol. 31, pp. 77-82, 2008.
3 P. Choi, J. Kim, M. Kim, J. Cho, D. Baek, S. Kim, B. Choi, "Enhanced efficiency of multicrystalline silicon solar cells made via UV laser texturing", Journal of the Korean Physical Society, Vol. 67, No. 6, pp. 991-994, 2015.   DOI
4 E. Lohmuller, B. Thadigsmann, J. Bartsch, C. Harmel, J. Specht, A. Wolf, F. Clement, M. Horteis, D. Biro, "Advanced metallization of rear surface passivated metal wrap through silicon solar cells", Energy Procedia, Vol. 8, pp. 546-551, 2011.   DOI
5 W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, "Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization", Solar Energy Materials & Solar Cells Vol.74, pp. 139-146, 2002.   DOI
6 M. M. Hilali, J. M. Gee, P. Hacke, "Bow in screen-printed back-contact industrial silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 91, pp. 1228-1233, 2007.   DOI
7 S. Gatz, K. Bothe, J. Muller, T. Dullweber, R. Brendel, "Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells", Energy Procedia Vol. 8, pp. 318-323, 2011.   DOI
8 H. Savin, P. Repo, G. Gastrow, P. Ortega, E. Calle, M. Garin, R. Alcubilla, "Black silicon solar cells with interdigitated backcontacts achieve 22.1% efficiency", Nature Nanotechnology, Vol. 10, pp. 624-629, 2015.   DOI
9 K. Fukui, Y. Inomata, K. Shirasawa, "Surface texturing using reactive ion etching for multicrystalline silicon solar cells", Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE Date Sept. 29 1997-Oct. 3 1997.
10 M. S. Yun, D. H. Hyun, B. J. Jin, J. Y. Choi, J. S. Kim, H. D. Kang, J. Yi, G. C. Kwon, "Study of low reflectance and RF frequency by rie surface texture process in multi crystal silicon solar cells", Journal of the Korean Vacuum Society Vol. 19, pp. 114-120, 2010.
11 W. Chen, H. Lin, F. C. Hong, "Improvement of conversion effi ciency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching", Thin Solid Films Vol. 597, pp. 50-56, 2015.   DOI
12 P. Feng, G. Liu, W. Wu, Y. Shi, Q. Wan, "Improving the blue response and efficiency of multicrystalline silicon solar cells by surface nanotexturing", IEEE Electron Device Letters, Vol. 37, pp. 306-309, 2016.   DOI
13 B. Kafle, J. Seiffe, M. Hofmann, L. Clochard, E. Duffy, J. Rentsch, "Nanostructuring of c-Si surface by F2-based atmospheric pressure dry texturing process applications and materials science", Phys. Status Solidi A, Vol. 212, No. 2, pp. 307-311, 2015.   DOI
14 C. Pacholski, "Photonic crystal sensors based on porous silicon", Sensors, Vol. 13, pp. 4694-4713, 2013.   DOI
15 B. Kafle, A. Mannan, T. Freund, L. Clochard, E. Duffy, J. Rentsch, M. Hofmann, Ralf Preu, "Nanotextured multicrystalline Al-BSF solar cells reaching 18% conversion efficiency using industrially viable solar cell processes", Phys. Status Solidi RRL, Vol. 9, No. 8, pp. 448-452, 2015.
16 Michael J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications, 2012 Wiley-VCH Verlag GmbH & Co. KGaA.
17 R. R. Bilyalov, R. LuKdemann, W. Wettling, L. Stalmans, J. Poortmans, J. Nijs, L. Schirone, G. Sotgiu, S. Strehlke, C. Levy-Clement, "Multicrystalline silicon solar cells with porous silicon emitter", Solar Energy Materials & Solar Cells, Vol. 60, pp. 391-420, 2000.   DOI
18 B. Bhushan (ed.), Encyclopedia of Nanotechnology, DOI 10.1007/978-90-481-9751-4.
19 V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, P. Panek, "Cost-effective methods of texturing for silicon solar cells", Solar Energy Materials & Solar Cells Vol. 72, pp. 291-298, 2002.   DOI
20 Z. Huang, N. Geyer, P. Werner, J. Boor, U. Gosele, "Metal-Assisted Chemical Etching of Silicon: A Review", Advanced Materials, Vol. 23, pp. 285-308, 2011.   DOI
21 J. Oh, H. Yuan, H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures", Nature Nanotechnology, Vol. 7, pp. 743-748, 2012.   DOI
22 S. K. Srivastava, P. Singh, M. Yameen, P. Prathap, C. M. S. Rauthan, Vandana, P. K. Singh, "Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells", Solar Energy Vol. 115, pp. 656-666, 2015.   DOI
23 M. Ju, M. Gunasekaran, K. Kim, K. Han, I. Moon, K. Lee, S. Han, T. Kwon, D. Kyung, J. Yi, "A new vapor texturing method for multicrystalline silicon solar cell applications", Materials Science and Engineering B, Vol. 153, pp. 66-69, 2008.   DOI
24 Z. G. Huang, X. X. Lin, Y. Zeng, S. H. Zhong, X. M. Song, C. Liu, X. Yuan, W. Z. Shen, "One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells", Solar Energy Materials & Solar Cells, Vol. 143, pp. 302-310, 2015.   DOI
25 M. B. Rabha, M. Saadoun, M. F. Boujmil, B. Bessai, H. Ezzaouia, R. Bennaceur, "Application of the chemical vapor-etching inpolycrystalline silicon solar cells", Applied Surface Science Vol. 252, pp. 488-493, 2005.   DOI
26 M. Saadoun, N. Mliki, H. Kaabi, K. Daoudi, B. Bessais, H. Ezzaouia, R. Bennaceur, "Vapour-etching-based porous silicon: a new approach", Thin Solid Films, Vol. 405, pp. 29-34, 2002.   DOI
27 PHOTON Consulting, LLC, "The true cost of solar power, how low can you go?", 2010.
28 X. Gu, X. Yun, K. Guo, L. Chen, D. Wang, D. Yang, "Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 101, pp. 95-101, 2012.   DOI
29 Fraunhofer Institute for Solar Energy Systems, ISE, "Photovoltaics Report", 2015.
30 V. Benda, "Crystalline silicon cells and modules in present photovoltaics", Journal of Engineering Science and Technology Review, Vol. 7, No. 2, pp. 7-15. 2014.
31 A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, M. Woodhouse, "A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs", Solar Energy Materials and Solar Cells Vol. 114, pp. 110-135, 2013.   DOI
32 H. Wu, "Wire sawing technology: A state-of-the-art review", Precision engineering, Vol. 43, pp. 1-9, 2016.
33 F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, "Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency", Solar Energy Materials and Solar cells, Vol. 141, pp. 132-138, 2015.   DOI
34 B. Meinel, T. Koschwitz, J. Acker, "Textural development of SiC and diamond wire sawed sc-silicon wafer", Energy Procedia, Vol. 27, pp. 330-336, 2012.   DOI
35 M. Steinert, J. Acker, A. Henbge, K. Wetzig, "Experimental studies on the mechanism of wet chemical etching of silicon in HF/$HNO_3$ mixtures", Journal of The Electrochemical Society, Vol. 152 No. 12, pp. C843-C850, 2005.   DOI
36 C. Park, J. Cho, Y. Lee, J. Park, M. Ju, Y-J Lee, J Yi, "Technology trends and prospects of silicon solar cells", Current Photovoltaic research, Vol. 1, No. 1, pp. 11-16, 2013.   DOI
37 M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, "Reactive Species Generated during Wet Chemical Etching of Silicon in HF/HNO3 Mixtures", Journal of Physical Chemistry B, Vol. 110, pp. 11377-11382, 2006.
38 H. Robbins, B. Schwartz, "Chemical etching of silicon", Journal of the electrochemical society, Vol. 106, No. 6, pp. 505-508, 1959.   DOI
39 D. J. Monk, D. S. Soane, R. T. Howe, "A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications,", Thin Solid Films, Vol. 232, pp. 1-12, 1993.   DOI
40 G. W. Trucks, K. Raghavachari, G. S. Higashi, Y. J. Chabal, "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation", Physical Review Letters, Vol. 65, No. 4, pp. 504-507.   DOI
41 H. Robbins, B. Schwartz, "Chemical etching of silicon", Journal of the electrochemical society, Vol. 107, No. 2, pp. 108-111.   DOI
42 K. Chen, Y. Liu, X. Wang, L. Zhang, X. Su, "Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell", Solar Energy Materials and Solar Cells, Vol. 133, pp. 148-155, 2015.   DOI
43 J. Zhao, A. Wang, F. Ferrazza, M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells", Applied Physics Letters, Vol. 73, No. 14, pp. 1991-1993, 1998.   DOI
44 A. Volk, N. Tucher, J. Seiffe, H. Hauser, M. Zimmer, B. Blasi, M. Hofmann, J. Rentsch, "Honeycomb structure on multi-crystalline silicon Al-BSF solar cell with 17.8% efficiency", Ieee Journal Of Photovoltaics, Vol. 5, No. 4, pp. 1027-1033, 2015.   DOI
45 C. Gerhards, C. Marckmann, R. Tolle, M. Spiegel, P. Fath, G. Willeke, E. Bucher, J. Creager, S. Narayanan, "Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization", Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE Date Sept. 29 1997-Oct. 3 1997.