DOI QR코드

DOI QR Code

Improved Understanding of LeTID of Single-crystalline Silicon Solar Cell with PERC

  • Received : 2018.10.16
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

Light elevated temperature induced degradation (LeTID) was noted as an issue in multi-crystalline silicon solar cells (MSSC) by Ram speck in 2012. In contrast to light induced degradation (LID), which has been researched in silicon solar cells for a long time, research about both LeTID and the mechanism of LeTID has been limited. In addition, research about LeTID in single-crystalline silicon solar cells (SSSC) is even more limited. In order to improve understanding of LeTID in SSSC with a passivated emitter rear contact (PERC) structure, we fabricated four group samples with boron and oxygen factors and evaluated the solar cell characteristics, such as the cell efficiency, $V_{oc}$, $I_{sc}$, fill factor (FF), LID, and LeTID. The trends of LID of the four group samples were similar to the trend of LeTID as a function of boron and oxygen.

Keywords

TOGBCQ_2018_v6n4_94_f0001.png 이미지

Fig. 1. Schematic diagram of (a) conventional A-BSF cell structure and (b) PERC

TOGBCQ_2018_v6n4_94_f0002.png 이미지

Fig. 2. Four ingot qualities including (a) Oi, (b) Resistivity, (c) Cs, and (d) MCLT (Red numbers show the difference value compared to the value of Group-4 as reference)

TOGBCQ_2018_v6n4_94_f0003.png 이미지

Fig. 3. Texturing images of all groups

TOGBCQ_2018_v6n4_94_f0004.png 이미지

Fig. 4. MCLT pattern images before and after heat treatment (Red numbers show the difference between value of average MCLTand value of Group-4 as reference)

TOGBCQ_2018_v6n4_94_f0005.png 이미지

Fig. 5. Cell performance values including (a) Voc, (b) Isc, (c) FF, and (d) cell efficiency before LID (Red numbers show the difference value from value of Group-4 as reference)

TOGBCQ_2018_v6n4_94_f0006.png 이미지

Fig. 6. The (a) LID and (b) cell efficiency after LID (Red numbers show the difference value from value of Group-4 as reference, and LID [%] is percent calculation based on efficiency)

TOGBCQ_2018_v6n4_94_f0007.png 이미지

Fig. 7. Relative Voc degradation at elevated temperature of 130℃ with Isc-injection for current equivalent to 1 sun illumination

TOGBCQ_2018_v6n4_94_f0008.png 이미지

Fig. 8. The (a) LeTID and (b) cell efficiency after LeTID (Red numbers show the difference value from the value of Group-4 as reference)

TOGBCQ_2018_v6n4_94_f0009.png 이미지

Fig. 9. Comparison of LID and LeTID (Blue and red numbers show difference values of LID and LeTID compared to values of Group-4 as reference)

Table 1. Four group conditions

TOGBCQ_2018_v6n4_94_t0001.png 이미지

Table 2. Reflectiveness of all groups

TOGBCQ_2018_v6n4_94_t0002.png 이미지

References

  1. Trends 2017 in Photovoltaic Applications Executive Summary, IEA PVPS T1-32, 3, 2017.
  2. M. Schmela, Global Market Outlook / 2017-2021, Solar Power Europe 13, June, 7, 2017.
  3. J.S. Hill, Global Solar Market Demand Expected To Reach 100 Gigawatts In 2017, Says Solar Power Europe, Cleantechnica.com, October 27th, 2017.
  4. K.H. Kim, S.H. Park, J.C. Park, I.S. Pang, S.W. Ryu, J.H. Oh, "Fast pulling of n-type Si ingots for enhanced Si solar cell production," Electron. Mater. Lett. First Online, 15 March, 2018. https://doi.org/10.1007/s13391-018-0040-3.
  5. J. Schmidt, "Light-induced Degradation in Crystalline Silicon Solar Cells," Solid State Phenom., Vol. 95-96, pp. 187-196, 2004.
  6. T. Luka, C. Hagendorf, M. Turek, "Multi crystalline PERC solar cells: Is light-induced degradation challenging the efficiency gain of rear passivation?," Photovoltaics International, pp. 43-48, 2016. www.pv-tech.org.
  7. J. Lindroos, Y. Boulfrad, M. Yli-Koski, H. Savin, "Preventing light-induced degradation in multi crystalline silicon," J. Appl. Phys., Vol. 115, 154902, 2014. https://doi.org/10.1063/1.4871404
  8. Y. Boulfrad, J. Lindroos, A. Inglese, M. Yli-Koski, H. Savin, "Reduction of light-induced degradation of boron-doped solar-grade Czochralski silicon by corona charging," Energy Proceed., Vol. 38, pp. 531-535, 2013. https://doi.org/10.1016/j.egypro.2013.07.313
  9. T. Saitoh, "Suppression of light degradation of carrier lifetimes in low-resistivity CZ-Si solar cells," Sol. Energy Mater. Sol. Cells, Vol. 65, pp. 277-285, 2001. https://doi.org/10.1016/S0927-0248(00)00103-3
  10. S. Togawa, Y. shiraishi, K. Terashima, S. Kimura, "Oxygen Transport Mechanism in Czochralski Silicon Melt," J. Electrochem. Soc., Vol. 142, pp. 2844-2848, 1995. https://doi.org/10.1149/1.2050103
  11. N. Machida, K. Hoshikawa, Y. Shimizu, "The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski silicon crystals grown in a transverse magnetic field," J. Cryst. Growth, Vol. 210, pp. 532-540, 2000. https://doi.org/10.1016/S0022-0248(99)00516-3
  12. M. Watanabe, W. Wang, M. Eguchi, T. Hibiya, "Control of oxygen-atom transport in silicon melt during crystal growth by electromagnetic force," Mater. T. JIM, Vol. 41, pp. 1013-1018, 2000. https://doi.org/10.2320/matertrans1989.41.1013
  13. K.H. Kim, B.C. Sim, I.S. Choi, H.W. Lee, "Point defect behavior in Si crystal grown by electromagnetic Czochralski (EMCZ) method," J. Cryst. Growth, Vol. 299, pp. 206-211, 2007. https://doi.org/10.1016/j.jcrysgro.2006.10.267
  14. E. Fourmond, M. Forster, R. Einhaus, H. Lauvray, J. Kraiem, M. Lemiti, "Electrical Properties of boron, phosphorus and gallium co-doped silicon," Energy Proced., Vol. 8, pp. 349-354, 2011. https://doi.org/10.1016/j.egypro.2011.06.148
  15. K. Ram speck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Birkmann, A. Seidl, "Light induced degradation of rear passivated mc-Si solar cells," Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, pp. 861-865, 2012.
  16. T. Luka, S. Grober, C. Hagendorf, K. Ram speck, M. Turek, "Intra-grain versus grain boundary degradation due to illumination and annealing behavior of multi-crystalline solar cells," Sol. Energy Mater. Sol. Cells, Vol. 158, pp. 43-49, 2016. https://doi.org/10.1016/j.solmat.2016.05.061
  17. T. Luka, M. Turek, S. Grober, C. Hagendorf, "Microstructural identification of Cu in solar cells sensitive to light-induced degradation," Phys. Status Solidi RRL, Vol. 11, 1600426, 2017. https://doi.org/10.1002/pssr.201600426
  18. F. Kersten, P. Engelhart, H.C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Peter, J. Heitmann, J.W. Muller, "Degradation of multi crystalline silicon solar cells and modules after illumination at elevated temperature," Sol. Energy Mater. Sol. Cells, Vol. 142, pp. 83-86, 2015. https://doi.org/10.1016/j.solmat.2015.06.015
  19. F. Kersten, P. Engelhart, H.C. Ploigt, F. Stenzel, K. Peter, T. Lindner, A. Szpeth, M. Bartzsch, A. Stekolnikov, M. Scherff, J. Heitmann, J.W. Muller, "A new light induced volume degradation effect of mc-Si solar cells and modules", 31st European Photovoltaic Solar Energy Conference, Hamburg, Germany, September, pp. 14-18, 2015.
  20. F. Kersten, F. Fertig, K. Petter, B. Kloter, E. Herzog, M.B. Strobel, J. Heitmann, J.W. Muller, "System performance loss due to LeTID", Energy Proced., Vol. 124, pp. 540-546, 2017. https://doi.org/10.1016/j.egypro.2017.09.260
  21. J. Schmidt, D. Bredemeier, D.C. Walter, "Improved understanding of light-induced degradation and regeneration in multi crystalline silicon solar cells," 27th International Photovoltaic Science and Engineering Conference, Shiga, Japan, 2017.
  22. F. Fertig, R. Lantzsch, A. Mohr, M. Schaper, M. Bartzsch, D. Wissen, F. Kersten, A. Mette, S. Peters, A. Eidner, J. Cieslak, K. Duncker, M. Junghanel, E. Jarzembowski, M. Kauert, B.F. Quandt, D. Meibner, B. Reiche, S. Geibler, S. Homlein, C. Klenke, L. Niebergall, A. Schonmann, A. Weihrauch, F. Stenzel, A. Hofmann, T. Rudoph, A. Schwabedissen, M. Gundermann, M. Fischer, J.W. Muller, D.J.W. Jeong, "Mass production of p-type Cz silicon solar cells approaching average stable conversion efficiencies of 22%," Energy Proced., Vol. 124, pp. 338- 345, 2017. https://doi.org/10.1016/j.egypro.2017.09.308
  23. R. Eberle, W. Kwapil, F. Schindler, M.C. Schunbert, S.W. Glunz, "Impact of the firing temperature profile on light induced degradation of multi crystalline silicon," Phys. Status Solidi RRL, Vol. 10, pp. 861-865, 2016. https://doi.org/10.1002/pssr.201600272
  24. A. Inglese, A. Focareta, F. Schindler, J. Schon, J. Lindroos, M.C. Schubert, H. Savin, "Light-induced degradation in multi crystalline silicon : the role of copper," Energy Proced., Vol. 92, pp. 808-814, 2016. https://doi.org/10.1016/j.egypro.2016.07.073
  25. D.N.R. Payne, C.E. Chan, B.J. Hallam, B. Hoex, M.D. Abbott, S.R. Wenham, D.M. Bagnall, "Rapid passivation of carrier-induced defects in p-type multi-crystalline silicon," Sol. Energy Mater. Sol. Cells, Vol. 158, pp. 102-106, 2016. https://doi.org/10.1016/j.solmat.2016.05.022
  26. W. Kwapil, T. Niewelt, M.C. Schubert, "Kinetics of carrier-induced degradation at elevated temperature in multi crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells, Vol. 173, pp. 80-84, 2017. https://doi.org/10.1016/j.solmat.2017.05.066
  27. R. Eberle, W. Kwapil, F. Schindler, M.C. Schunbert, S.W. Glunz, M.C. Schubert, "Firing temperature profile impact on light induced degradation in multi crystalline silicon," Energy Proced., Vol. 124, pp. 712-717, 2017. https://doi.org/10.1016/j.egypro.2017.09.082
  28. D.B.M. Klaassen, "A unified mobility model for device simulation-II. Temperature dependence of carrier mobility and lifetime," Solid-State Electron., Vol. 35, pp. 961-967, 1992. https://doi.org/10.1016/0038-1101(92)90326-8
  29. J. Haunschild, I.E. Reis, J. Geilker, S. Rein, "Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging," Phys. Status Solidi RRL, Vol. 5, pp. 199-201, 2011. https://doi.org/10.1002/pssr.201105183
  30. T.S. Boscke, D. Kania, A. Helbig, C. Schollhorn, M. Dupke, P. Sadler, M. Braun, T. Roth, D. Stichtenoth, T. Wutherich, R. Jesswein, D. Fiedler, R. Carl, J. Lossen, A. Grohe, H.J. Krokoszinski, "Bifacail n-Type cells with >20% front-side efficiency for industrial production," IEEE J. Photovolt., Vol. 3, pp. 674-677, 2013. https://doi.org/10.1109/JPHOTOV.2012.2236145
  31. M. Turek, C. Hagendorf, T. Luka, R. Meier, H. Hanifi, M. Glaser, D. Lausch, I. Kruse, "Light-induced degradation newly addressed-predicting long-term yield loss of high-performance PV modules," www.pv-tech.org/Technical Briefing/SystemIntegration, May, pp. 1-5, 2017.