• Title/Summary/Keyword: crystal violet

Search Result 160, Processing Time 0.028 seconds

Growth of $NdAl_3(BO_3)_4$ Single Crystal for Miniature Solid State Laser (소형 고체 레이저용 $NdAl_3(BO_3)_4$ 단결정 육성)

  • 정선태;강진기;김정환;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.643-650
    • /
    • 1993
  • NdAl3(BO3)4 have been developed for miniature solid state laser material. Single crystals of NdAl3(BO3)4 were grown by TSSG technique using BaB4O7 flux. The effects of growth conditions such as cooling rate, seed orientation and rotation speed on crystal quality and the morphology were studied. At the cooling rate of 2.4$^{\circ}C$/day and the crystal rotation speed of 30~40rpm with the seed orientation in <201> or <100> directions, transparent and light violet colored crystals in size of 10$\times$15$\times$20㎣ with well developed {010}, {111}, {111}, {021}, {001}, {102}, {112}, {021} faces were obtained. By X-ray diffraction analysis, the space group was determined as C2/c, and the X-ray powder data was obtained.

  • PDF

Dimerization Behavior of Cinnamate Group attached to Flexible Polymer Backbone and Its Application to Liquid Crystal Alignment

  • Sung, Shi-Joon;Cho, Ki-Yun;Hah, Hyun-Dae;Kim, Won-Sun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1163-1166
    • /
    • 2004
  • Cinnamate group is well-known for the dimerization reaction by ultra-violet irradiation and cinnamate polymers are studied for photo-alignment materials. The cinnamate groups of flexible polymer are found to produce LC alignment parallel to polarization direction of ultra-violet light, which is contrary to the LC orientation on conventional cinnamate polymers. The un-reacted cinnamate groups in the flexible polymer are also found to participate in cycloadducts formation by additional thermal reaction that preserves the orientation of cycloadducts, leading to the enhancement of thermal stability of LC alignment.

  • PDF

Effect of Mn on the Growth of ZnO Crystals via a Thermal Evaporation of Zn-Mn Mixture (Zn-Mn 혼합물의 열 증발에 의한 ZnO 결정의 성장에 미치는 Mn의 영향)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.443-447
    • /
    • 2014
  • ZnO crystals with different morphologies were synthesized through a thermal evaporation of Zn-Mn mixtures in air. The morphology was dependant on the Mn content in Zn-Mn mixture. The morphology was changed from rod to tetrapod shape with decreasing Mn content in Zn-Mn mixture. The result indicates that the concentration of Mn might be responsible for the different morphologies of ZnO crystals. XRD spectra showed that the ZnO crystals had a hexagonal wurtzite crystal strutures. For all the samples, room temperature cathodoluminescence spectra showed a ultra-violet emission at 380 nm and a green emission at around 500 nm. However, the intensity ratio of ultra-violet emission to green emission was significantly different with the Mn content in the source material.

Biomaterials Inhibiting Biofilm Formation of Staphylococcus aureus (생물소재를 이용한 황색포도상구균의 바이오필름 억제 연구)

  • Shin, Kye-Ho;Yun, Yu-Na;Jeon, Gi-Boong;Lee, Tae-Ryong;Yi, Sung-Won;Cho, Jun-Cheol;Park, Ji-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.4
    • /
    • pp.347-350
    • /
    • 2011
  • Biofilms are surface-attached microbial communities with phenotypic and biochemical properties distinct from free-living planktonic cells. Biofilm bacteria show much greater resistance than planktonic counterparts and much higher concentration of biocide is needed to treat biofilms compared to the dosage used for planktonic bacteria. As a result, alternative strategies or more effective agents exhibiting activity against biofilm-producing micro-organisms are of great interest. Therefore, we turned our attention to control of biofilm of S. aureus. The aims of this research are to investigate substances which inhibit the formation of biofilm by S. aureus and to suggest effective materials for controlling skin problems. We coated slide glasses with human placental collagen and the coverslip was incubated with test materials and bacteria. The coverslip was stained with crystal violet and we measured optical density of each sample. The biofilm inhibitory activity was calculated by crystal violet staining degrees. In this study, S. aureus ATCC 6538 was used as test organism. Our results show that both water soluble and insoluble Hinoki cypress polysaccharide strongly inhibited biofilm formation. Whereas, green tea and sunset hibiscus root extract promoted biofilm. Xylitol showed a concentration dependent effect; high concentration (3 % and 5 %) of xylitol reduced biofilm while promoted biofilm formation at a concentration of 1 %. These results support that Hinoki cypress polysaccharide and xylitol have ability to suppress biofilm formation.

Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor (Trametes versicolor 의한 triphenyl methane계 염료의 분해)

  • Baek, Seung-A;Choi, Jaehyuk;Lee, Tae-Soo;Im, Kyung-Hoan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White rot fungi produce lignin-degrading enzymes such as laccase, manganese peroxidase and lignin peroxidase. These extracellular oxidases efficiently degrade recalcitrant synthetic dyestuffs with diverse chemical structures. Here, we examined the activities of lignin-degrading enzymes in Trametes versicolor using triphenyl methane dyes, crystal violet (CV) and malachite green (MG). Both dyes were decolorized by T. versicolor in solid and liquid culture conditions. T. versicolor decolorized MG more quickly than CV in both conditions. Among three ligninolytic enzymes, laccase was most abundantly found in the decolorization processes of CV and MG. However, higher activity of laccase was needed to degrade CV than MG. The much less activity of MnP was also detected. But the increase of MnP activity was well corresponded to the decolorization efficiency of CV, suggesting the involvement of MnP in CV degrading process. However, its role in the degradation process of MG is supposed to be subsidiary to laccase.

Initial bacterial adhesion on resin, titanium and zirconia in vitro

  • Lee, Byung-Chul;Jung, Gil-Yong;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.81-84
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS. Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with $1 {\mu}m$ diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting from resazurin reduction were performed for quantifying the bacterial adhesion. RESULTS. Surface of resin composite was significantly rougher than that of titanium and zirconia, although all tested specimens are classified as smooth. The resin specimens showed lower value of contact angle compared with titanium and zirconia specimens, and had hydrophilic surfaces. The result of scanning electron microscopy demonstrated that bound bacteria were more abundant on resin in comparison with titanium and zirconia. When total biofilm mass determined by crystal violet, absorbance value of resin was significantly higher than that of titanium or zirconia. The result of relative fluorescence intensities also demonstrated that the highest fluorescence intensity was found on the surface of resin. Absorbance value and fluorescence intensity on titanium was not significantly different from those on zirconia. CONCLUSION. Resin specimens showed the roughest surface and have a significantly higher susceptibility to adhere Streptococcus sanguis than titanium and zirconia when surfaces of each specimen were polished under same condition. There was no significant difference in bacteria adhesion between titanium and zirconia in vitro.

Effect of NaCl on Biofilm Formation of the Isolate from Staphylococcus aureus Outbreak Linked to Ham

  • Lee, Soomin;Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.257-261
    • /
    • 2014
  • The objective of this study was to evaluate the effects of NaCl on the biofilm formations of the isolate from Staphylococcus aureus outbreaks linked to ham. The S. aureus ATCC13565 isolated from ham was exposed to NaCl concentrations of 0%, 2%, 4%, and 6% supplemented in tryptic soy broth (TSB) for 24 h at $35^{\circ}C$, followed by plating 0.1 mL of the culture on tryptic soy agar containing 0%, 2%, 4%, and 6% NaCl, respectively. After incubating at $35^{\circ}C$ for 24 h, the colonies on the plates were collected and diluted to $OD_{600}$ = 0.1. The diluents of S. aureus were incubated on a 96-well flat bottom plate containing TSB plus the appropriate NaCl concentrations, and the biofilm formation was quantified by crystal violet staining after being incubated at $35^{\circ}C$ for 9 h. Confocal laser scanning microscope (CLSM) was also used for visualizing the biofilm formation of S. aureus at NaCl concentrations of 0%, 2%, 4%, and 6%. The transcriptional analysis of biofilm-related genes, such as icaA, atl, clfA, fnbA, sarA, and rbf, was conducted by quantitative real-time PCR. Crystal violet staining and CLSM showed that the biofilm formations of S. aureus increased (p<0.05) along with the NaCl concentrations. Moreover, the expression of the icaA genes was higher at the NaCl concentrations of 4% and 6% as compared with 0% of NaCl by approximately 9-folds and 20-folds, respectively. These results indicated that the NaCl formulated in processed food may increase the biofilm formations of S. aureus by increasing the icaA gene expressions.

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

AN EXPERIMENTAL STUDY ON PENETRATION OF DYE IN COMPOSITE RESIN (수종(數種) Composite Resin의 색소침투(色素浸透)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Myung-Chong
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.155-163
    • /
    • 1986
  • The purpose of this study was to measure penetration of dye stuff (2% Methylene blue, 2% Hematoxylin, 2% crystal violet and 2% safranin-O) on unfilled resin (Lang Dental MFG Co.) Hipol (Boopyung Dental Chemical Co. Macrocomposite resin) Durafill (Kulzer, Co. Microfilled Composite resin) and Heliosit (Vivadent Co. Microfilled Composite resin) The unfilled resin with dough stage was inserted into plastic tuble (5mm in diameter and 4mm in height) with condensation force of 1000 gr, 2000 gr and without condensation force. Hipol mixed on the mixed pad was inserted into the plastic tube by the same method as the unfilled resin. The microfilled resins which were Durafill and Heliosit were polymerized for 60 seconds with the visible light on each surface of the plastic tube which was upper and lower, under condensation force of 1000 gr, 2000 gr and without condensation force. All specimens were stored in the air for 24 hours, then specimens were immersed in the various kind of dye solution for different period of time (1 hour and 24 hours). These dye-treated specimens were polished horizontally until removing 0.5mm of each surface on the emery paper (#1000), and the dye penetration in the polished surface was measured under the digital microscope (Japan Fosuh). Following results were obtained 1. The penetration of dyes was the most excessive in Durafill and was not influenced on the condensation force and the period of immersion time. 2. All dyes were penetrated into Hipol, and Crystal violet was penetrated most excessively in all dyes. 3. The penetration of dye in all resins was not influenced by the period of immersion time and condensation force. 4. There was no evidence of dye penetration in unfilled resin.

  • PDF

Persistence of Multidrug-Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 and bap for 5 Years

  • Sung, Ji Youn;Koo, Sun Hoe;Kim, Semi;Kwon, Gye Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1481-1489
    • /
    • 2016
  • The emergence and dissemination of carbapenemase-producing Acinetobacter baumannii isolates have been reported worldwide, and A. baumannii isolates harboring blaOXA-23 are often resistant to various antimicrobial agents. Antimicrobial resistance can be particularly strong for biofilm-forming A. baumannii isolates. We investigated the genetic basis for carbapenem resistance and biofilm-forming ability of multidrug-resistant (MDR) clinical isolates. Ninety-two MDR A. baumannii isolates were collected from one university hospital located in the Chungcheong area of Korea over a 5-year period. Multiplex PCR and DNA sequencing were performed to characterize carbapenemase and bap genes. Clonal characteristics were analyzed using REP-PCR. In addition, imaging and quantification of biofilms were performed using a crystal violet assay. All 92 MDR A. baumannii isolates involved in our study contained the blaOXA-23 and bap genes. The average absorbance of biomass in Bap-producing strains was much greater than that in non-Bap-producing strains. In our study, only three REP-PCR types were found, and the isolates showing type A or type B were found more than 60 times among unique patients during the 5 years of surveillance. These results suggest that the isolates have persisted and colonized for 5 years, and biofilm formation ability has been responsible for their persistence and colonization.