Browse > Article
http://dx.doi.org/10.5851/kosfa.2014.34.2.257

Effect of NaCl on Biofilm Formation of the Isolate from Staphylococcus aureus Outbreak Linked to Ham  

Lee, Soomin (Department of Food and Nutrition, Sookmyung Women's University)
Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University)
Publication Information
Food Science of Animal Resources / v.34, no.2, 2014 , pp. 257-261 More about this Journal
Abstract
The objective of this study was to evaluate the effects of NaCl on the biofilm formations of the isolate from Staphylococcus aureus outbreaks linked to ham. The S. aureus ATCC13565 isolated from ham was exposed to NaCl concentrations of 0%, 2%, 4%, and 6% supplemented in tryptic soy broth (TSB) for 24 h at $35^{\circ}C$, followed by plating 0.1 mL of the culture on tryptic soy agar containing 0%, 2%, 4%, and 6% NaCl, respectively. After incubating at $35^{\circ}C$ for 24 h, the colonies on the plates were collected and diluted to $OD_{600}$ = 0.1. The diluents of S. aureus were incubated on a 96-well flat bottom plate containing TSB plus the appropriate NaCl concentrations, and the biofilm formation was quantified by crystal violet staining after being incubated at $35^{\circ}C$ for 9 h. Confocal laser scanning microscope (CLSM) was also used for visualizing the biofilm formation of S. aureus at NaCl concentrations of 0%, 2%, 4%, and 6%. The transcriptional analysis of biofilm-related genes, such as icaA, atl, clfA, fnbA, sarA, and rbf, was conducted by quantitative real-time PCR. Crystal violet staining and CLSM showed that the biofilm formations of S. aureus increased (p<0.05) along with the NaCl concentrations. Moreover, the expression of the icaA genes was higher at the NaCl concentrations of 4% and 6% as compared with 0% of NaCl by approximately 9-folds and 20-folds, respectively. These results indicated that the NaCl formulated in processed food may increase the biofilm formations of S. aureus by increasing the icaA gene expressions.
Keywords
ham; Staphylococcus aureus; biofilm; NaCl;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., Blevins, J. S., and Smeltzer, M. S. (2004) Global gene expression in Staphylococcus aureus limits biofilm formation. Infect.Immun. 71, 4206-4211.
2 Bhunia, A. K. (2008) Staphylococcus aureus. In: Foodborne Microbial Pathogens. Bhunia, A. K. (ed.) Springer, NY, pp. 125-134.
3 Biswas, R., Voffu, L., Simon, U. K., Hentschel, P., Thumm, G., and Gotz, F. (2006) Activity of the major staphylococcal autolysin Atl. FEMS Microbiol. Lett. 259, 260-268.   DOI   ScienceOn
4 Bower, C. K. and Daeschel, M. A. (1999) Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 50, 33-44.   DOI   ScienceOn
5 Cue, D., Lei, M. G., and Lee, C. Y. (2012) Genetic regulation of the intercellular adhesion locus in staphylococci. Front. Cell Infect. Microbiol. 2, 38.
6 Kennedy, C. A., and O'Gara, J. P. (2004) Contribution of culture media and chemical properties of polystyrene tissue culture plates to biofilm development by Staphylococcus aureus. J. Med. Microbiol. 53, 1171-1173.   DOI   ScienceOn
7 Cue, D., Lei, M. G., Luong, T. T., Kuechenmeister, L., Dunman, P. M., O'Donnell, S., Rowe, S., O'Gara, J. P., and Lee, C. Y. (2009) Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J. Bacteriol. 191, 6363-6373.   DOI   ScienceOn
8 Donlan, R. M. (2002) Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 8, 881-890.   DOI   ScienceOn
9 Huang, Y., Kan, B., Lu., Y., and Szeto, S. (2009) The effect of osmotic shock on RpoS expression and antibiotic resistance in Escherichia coli. J. Exp. Microbiol. Immun. 13, 13-17.
10 Livermore, D. M. (2000) Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents. 16, S3-S10.   DOI   ScienceOn
11 Lim, Y., Jana, M., Luong, T. T., and Lee, C. Y. (2004) Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J. Bacteriol. 186, 722-729.   DOI
12 Takenaka, S., Iwaku, M., and Hoshino, E. (2001) Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. J. Infect. Chemothe. 7, 87-93.   DOI   ScienceOn
13 Lowy, F. D. (1998) Staphylococcus aureus infections. New Eng. J. Med. 339, 520-532.   DOI   ScienceOn
14 Otto, M. (2008) Staphylococcal biofilms. Curr. Top. Microbiol. Immun. 322, 207-228.
15 Poulsen, L. V. (1999) Microbial biofilm in food processing. LWT-Food Sci. Technol. 32, 321-326.   DOI   ScienceOn
16 Rode, T. M., Moretro T., Langsrud, S., and Holck, A. (2012) Responses of Staphylococcus aureus to environmental stresses. In: Stress Response of Foodborne Microorganisms. Wong, H. C. (ed.) Nova Science Publishers, NY, pp. 509-546.
17 Sambanthamoorthy, K., Schwartz, A., Nagarajan, V., and Elasri, M. O. (2008) The role of msa in Staphylococcus aureus biofilm formation. BMC Microbiol. 8, 221.   DOI   ScienceOn
18 Smith, J. L., Benedict, R. C., and Palumbo, S. A. (1982) Protection against heat-injury in Staphylococcus aureus by solutes. J. Food Prot. 45, 54.   DOI
19 U. S. Food and Drug Administration (FDA). (2004) Bad bug book: Foodborne pathogenic microorganisms and natural toxins handbook, International Medical Publishing, McLean, Virginia.
20 Vazquez-Sanchez, D., Habimana, O., and Holck, A. (2013) Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Curr. Microbiol. 66, 110-120.   DOI   ScienceOn
21 Xu, H., Zou, Y., Lee, H. Y., and Ahn, J. (2010) Effect of NaCl on the biofilm formation by foodborne pathogens. J. Food Sci. 75, M580-585.   DOI   ScienceOn
22 Yoon, H. (2013) Influence of NaCl on pathogenicity and biofilm formation of Salmonella. Master's thesis. Sookmyung Women's Univ., Seoul, Korea.
23 Yoon, H., Park, B. Y., Oh, M. H., Choi, K. H., and Yoon, Y. (2013) Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. Biomed Res. Int. Article ID 274096.
24 Zapun, A., Contreras-Martel, C., and Vernet, T. (2008) Penicillin- binding proteins and beta-lactam resistance. FEMS Microbiol. Rev. 32, 361-385.   DOI   ScienceOn
25 Le Loir, Y., Baron, F., and Gautier, M. (2003) Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2, 63-76.
26 Rode, T. M., Langsrud, S., Holck, A., and Moretro, T. (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int. J. Food Microbiol. 116, 372-383.   DOI   ScienceOn