• Title/Summary/Keyword: crystal

Search Result 11,892, Processing Time 0.042 seconds

Synthesis and Structural Characterization of Optically Active Bis(L-Prolinato)(2,2'-bipyridine)Co(Ⅲ) and Bis(L-Prolinato)(1,10-phenanthroline)Co(Ⅲ) (광학활성 비스(L-Prolinato)(2,2'-bipyridine)코발트(Ⅲ)와 비스(L-Prolinato)(1,10-phenanthroline)코발트(Ⅲ)의 합성과 구조적인 특성)

  • Oh, Chang Eon;Kim, Bok Jo;Yoon, Doo Cheon;Doh, Myung Ki;Heo, Nam Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.715-721
    • /
    • 1995
  • Reaction between trans-$[Co(py)_4/Ci_2]^+(py=pyridine)$ and L-proline and diimine (=2,2'-bipyridine, 1,10-phenanthroline) gives two products, $[Co(L-pro)_2/(bipy)]^+$ and $[Co(L-pro)_2(phen)]^+$ complexes, respectively. On column chromatography, $[Co(L-pro)_2(bipy)]^+$ was obtained only as $Lambda$-trans(N) and $[Co(L-pro)_2(phen)]^+$ was obtained both as ${\Delta}$-trans(N) and $Lambda$-cis(O)cis(N) due to the stereoselectivity of L-prolinato which was stereospecific. Crystal data are as follows: $Lambda$-trans(N)-$[Co(L-pro)_2(bipy)]CIO_4{\cdot}2H_2O$ (1): monoclinic, space group $P2_1(#4)$, a=9.807(3), b=10.421(1), c=12.778(2) ${\AA}$, ${\beta}=109.90(2)^{\circ}$, V=1227.8(5) ${\AA}^3$, Z=2; 1571 data with I > 3.0${\sigma}$(I) were refined to R=0.060, $R_W = 0.067$; ${\Delta}$-trans(N)-$[Co(L-pro)_2(phen)]Cl{\cdot}_3H_2O$(2): monoclinic, space group $P2_1(#4)$, a=9.838(2), b=12.892(2), c=10.747(2)${\AA}$, ${\beta}=113.79(2)^{\circ}$, V=1247.2(4) ${\AA}^3$, Z=2; 2433 data with I > 3.0${\sigma}$(I) were refined to R=0.043, $R_W = 0.050$.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Factors Affecting the Property of $CaCO_3$Precipitated from $CaCl_2-Na_2CO_3-H_2O$ System ($CaCl_2-Na_2CO_3-H_2O$ 반응계에서 침강성탄산칼슘의 성상에 영향을 주는 인자에 관하여)

  • Song, Young-Jun;Park, Charn-Hoon;Cho, Dong-Sung
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.32-41
    • /
    • 1996
  • The objective of this study was to investigate the facton affecting the property of CaCO, farmed from CaClz-Na,CO,-HiOsystem. The effcct of the concentmtlon of reaclants, impurity, the pH of reaction, the addition of sccd crystal, and injectingvelocity af reaclant solution an thc yield oI CaCO; polymorphs. parlide size and whiteness of CaCO, were investigated. Thcmqor resulls are ;o fallows; I The optimum concentratinn of reildilnts for forming vaterlte and aragonite is the range of 0.1-1.0 mol/l, when the yicld of vittcrite and araga~nles howed 7542% and XU-90%. respedively. 2. Among thc composition of impunticscontained h limestone, Fe' decrease the wh~tcness nf CaCO;. md Mg" increase the yield of aragonite. 3. The pHrange of vaterite and aragonite are formed with high yield is 8-11, and Calcite is famed in pH 6-8 with big particle size of 1over and in pH 11-13 with small particle size of I under. 4. The yicld of calcite and aragonite was increased by addingthc seed cryst.al nf itself.d cryst.al nf itself.

  • PDF

Bioactive Characterization of Bacillus thuriniensis subsp. kurstaki CAB133 Isolated from Domestic Soil (국내 토양으로 분리된 Bacillus thuriniensis subsp. kurstaki CAB133균주의 생물학적 특성)

  • Choi, Su-Yeon;Cho, Min-Su;Kim, Tae-Hwan;Kim, Jin-Su;Pack, Seung-Kyung;Youn, Young-Nam;Hong, Soon-Sung;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2008
  • To screen highly active Bacillus thuringiensis isolates against Spodoptera litura (Lepidoptera, Noctuidae), 46 B. thuringiensis was isolated from 115 samples obtained from several crop soils. Especially, B. thuringiensis subsp. kurstaki CAB133 and CAB162 isolates showed 100% mortality against S. litura. $LD_{50}$ values of CAB 133, CAB162 and HD-1 strains of B. thuringiensis subsp. kurstaki were 0.089, 3.144 and $0.513{\mu}g/ml$ against 2nd larva of S. litura, respectively. The weight of 3rd larva of S. litura which were fed crystal inclusion protein $(1.267{\mu}g/ml)$ with B. thuringiensis subsp. kurstaki CAB133 was about 30 times lass than control group. CAB133 and CAB 162 strains of B. thuringiensis subsp. kurstaki which were taken a highly toxity against S. litura were analyzed by SDS-PAGE, and estimated the molecular weight of the Cry proteins. Their serological identification by H serotypes were showed B. thuringiensis subsp. kurstaki (3abc) type.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Effects of chromium chloride addition on coloration and mechanical properties of 3Y-TZP (크롬염화물 첨가에 따른 지르코니아 색상 및 물리적 성질 변화에 관한 연구)

  • Oh, Gye-Jeong;Seo, Yoon-Jeong;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Lee, Kyung-Ku;Lim, Tae-Kwan;Lee, Doh-Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • Purpose: The purpose of this study was to examine the effects of chromium chloride addition on coloration, mechanical property and microstructure of 3Y-TZP. Materials and methods: Chromium chloride was weighed as 0.06, 0.12, and 0.25 wt% and each measured amount was dissolved in alcohol. $ZrO_2$ powder was mixed with each of the individual slurry to prepare chromium doped zirconia specimen. The color, physical properties and microstructure were observed after the zirconia specimen were sintered at $1450^{\circ}C$. In order to evaluate the color, spectrophotometer was used to analyze the value of $L^*$, $C^*$, $a^*$ and $b^*$, after placing the specimen on a white plate, and measured according to the International Commission on Illumination (CIE) standard, Illuminant D65 and SCE system. The density was measured in the Archimedes method, while microstructures were evaluated by using the scanning electron microscopy (SEM) and XRD. Fracture toughness was calculated Vickers indentation method and indentation size was measured by using the optical microscope. The data were analyzed with 1-way ANOVA test (${\alpha}$ = 0.05). The Tukey multiple comparison test was used for post hocanalysis. Results: 1. Chromium chloride rendered zirconia a brownish color. While chromium chloride content was increased, the color of zirconia was changed from brownish to brownish-red. 2. Chromium chloride content was increased; density of the specimen was decreased. 3. More chromium chloride in the ratio showed increase size of grains. 4. But the addition of chromium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. 5. The chromium chloride in zirconia did not showed statistically significant difference in fracture toughness, but addition of 0.25 wt% showed a statistically significant difference (P<.05). Conclusion: Based on the above results, this study suggests that chromium chlorides can make colored zirconia while adding in a liquid form. The new colored zirconia showed a slight difference in color to that of the natural tooth, nevertheless this material can be used as an all ceramic core material.

The Crystal and Molecular Structure of 25,26,27,28-Tetrnacetoxy[4]Arene${\cdot}$Monohydrate (25,26,27,28-테트라아세트오키시[4]에렌${\cdot}$일수화물의 결정 및 분자구조)

  • Choong Tai Ahn;Kwanghyun No
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.344-350
    • /
    • 1993
  • 25,26,27,28-Tetraacetoxycalix[4]arene·monohydrate is orthorhombic, space group Pbca with a = 14.979(4), b = 15.154(4), c = 27.890(3) ${\AA}$, Z = 8, V = 6330.6 ${\AA}^{-3}$, D$_c$ = 1.28 $g{\cdot}cm^{-3}$, (Mo K${\alpha}$) = 0.71069 ${\AA}$, ${\mu}$ = 0.86 cm$^{-1}$, F(000) = 2600, and R = 0.069 for 3376 unique observed reflections with I > 1.0 ${\sigma}$(I). The structure was solved by direct methods and refined by cascade diagonal least-squares refinement. All the C-H bond lengths(= 0.96 ${\AA}$), the methyl groups and the methylene groups are fixed and refined as the rigid groups with ideal geometry. The macrocycle exists in the 1,3 alternate conformation (by Conforth) making the angles of 110.7, 684, 113.7 and 68.8$^{\circ}$ between the benzene rings and the methylenic mean plane, and four each acetoxy groups are twisted away from their own benzene rings with the angles of 68.2, 97.6, 78.9 and 71.3$^{\circ}$, respectively. The relative dihedral angles between two opposite side of the benzene rings are 135.6$^{\circ}$ for the rings (1) and (3) and 135.2$^{\circ}$ for (2) and (4). A water molecule which has nearly the same height of the methylenic plane of the macrocycle in the c-axis, is located within the distances of 2.942(5) ${\AA}$ from the O(8) atom of the carbonyl group and 2.901 ${\AA}$ from, another O(2)(1/2-x, -1/2+y, z). The shortest contact between the molecule is 3.193 ${\AA}$ from the O(4) to the C(3)(1/2+x, 1/2-y,-z).

  • PDF

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

Gahnite-Sillimanite-Garnet Mineral Assemblage from the Host Rocks of the Cannington Deposit, North Queensland, Australia: Relationship between Metamorphism and Zn-Mineralization (호주 퀸즈랜드 주 캔닝턴 광상 모암의 아연-첨정석-규선석-석류석에 관한 연구 :변성작용과 아연-광화작용에 대해서)

  • Kim Hyeong Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.309-325
    • /
    • 2004
  • The Cannington Ag-Pb-Zn deposit, northwest Queensland, Australia developed around the host rocks composing banded and migmatitic gneisses, sillimanite-garnet schist and amphibolite. Three crystal habits of sillimanite, gahnite (Zn-spinel) and garnet porphyroblasts occurred on the host rocks of the Cannington deposit could be used to delineate metamorphism that closely associated with Zn-mineralization in the deposit. Linkages the metamorphism to Zinc-mineralization is determined in four chemical systems, KFMASH (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$), KFMASHTO (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$-TiO$_2$-Fe$_2$O$_3$), NCKFMASH (Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$) and MnNCK-FMASH (MnO-Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$), using THERMOCALC program (version 3.1; Powell and Holland 1988). Partial melting in MnNCKFMASH and NCKFMASH systems occurs at lower temperature than in the KFMASH and KFMASHTO systems. The partial melting temperature decreases with increasing of Na/(Na+Ca+K) of the bulk rock compositions in the MnNCKFMASH system. The host rocks have melted ca 15 vol.% in the MnNCKFMASH system at peak metamorphic conditions (634$\pm$62$^{\circ}C$ and 4.8$\pm$1.3 kbar), but partial melting have not occurred in KFMASHTO system. Based on calculations of sillimanite isograd in different systems and sillimanite modal pro-portion, prismatic and rhombic sillimanite and gahnite porphyroblasts including prismatic sillimanite inclusion probably have resulted from pressure and temperature increasing through partial melting (from 550~$600^{\circ}C$, 2.0~3.0 kbar to 700~75$0^{\circ}C$, 5.0~7.0 kbar), furthermore have experienced N-S then W-E crustal shortening during D$_1$ and D$_2$ deformation. Consequently, Zinc mineralization related to gahnite growth occurred during D$_2$ and was redistributed and upgraded by partial melting and retrograde metamorphism into structural and rheological sites during shearing in D$_3$.

Deposition of Poly-$Si_{1-x}Ge_x$ Thin Film by RTCVD (RTCVD에 의한 다결정 $Si_{1-x}Ge_x$ 박막 증착)

  • Kim, Jae-Jung;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.690-698
    • /
    • 1995
  • The Poly-S $i_{1-x}$G $e_{x}$ thin films were deposited on oxidized Si wafer by RTCVD(rapid thermal chemical vapor deposition) using Si $H_4$and Ge $H_4$, at 450 ~5$50^{\circ}C$. The variation of Ge mole fraction and the deposition rate of S $i_{1-x}$G $e_{x}$ thin film were studied as a function of the deposition temperature and the Ge $H_4$/Si $H_4$input ratio, and the crystal phase and the surface roughness were studied by XRD and AFM(atomic force microscopy), respectively. The experimental results showed that the activation energy for the deposition of poly-S $i_{1-x}$G $e_{x}$ was about 32~37Kca /mol and the deposition rate of S $i_{1-x}$G $e_{x}$ thin films was increased with increasing the deposition temperature and the input ratio. From the analysis of composition, it was known that the Ge mole fraction within the poly-S $i_{1-x}$G $e_{x}$ thin film was decreased with decreasing the input ratio and increasing the deposition temperature. As-deposited S $i_{1-x}$G $e_{x}$ thin films were polycrystalline over the entire experimental range. But those were amorphous at the deposition temperature of 450, 475$^{\circ}C$ and the input ratio of 0.05. By adding the Ge $H_4$, poly-S $i_{1-x}$G $e_{x}$ thin film were deposited at relatively lower deposition temperatures($\leq$ 5$50^{\circ}C$) than those of conventional poly-Si(>$600^{\circ}C$). From surface roughness measurement of poly-S $i_{1-x}$G $e_{x}$ it was found that the surface roughness( $R_{i}$ ) increased with increasing the deposition temperature and input ratio.and input ratio.

  • PDF