DOI QR코드

DOI QR Code

Bioactive Characterization of Bacillus thuriniensis subsp. kurstaki CAB133 Isolated from Domestic Soil

국내 토양으로 분리된 Bacillus thuriniensis subsp. kurstaki CAB133균주의 생물학적 특성

  • Choi, Su-Yeon (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Cho, Min-Su (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Tae-Hwan (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Pack, Seung-Kyung (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hong, Soon-Sung (National Institute of Agricultural Science and Technology) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 최수연 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 조민수 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김태환 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김진수 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 백승경 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 홍순성 (농업과학기술원 농약평가과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Published : 2008.06.30

Abstract

To screen highly active Bacillus thuringiensis isolates against Spodoptera litura (Lepidoptera, Noctuidae), 46 B. thuringiensis was isolated from 115 samples obtained from several crop soils. Especially, B. thuringiensis subsp. kurstaki CAB133 and CAB162 isolates showed 100% mortality against S. litura. $LD_{50}$ values of CAB 133, CAB162 and HD-1 strains of B. thuringiensis subsp. kurstaki were 0.089, 3.144 and $0.513{\mu}g/ml$ against 2nd larva of S. litura, respectively. The weight of 3rd larva of S. litura which were fed crystal inclusion protein $(1.267{\mu}g/ml)$ with B. thuringiensis subsp. kurstaki CAB133 was about 30 times lass than control group. CAB133 and CAB 162 strains of B. thuringiensis subsp. kurstaki which were taken a highly toxity against S. litura were analyzed by SDS-PAGE, and estimated the molecular weight of the Cry proteins. Their serological identification by H serotypes were showed B. thuringiensis subsp. kurstaki (3abc) type.

국내의 난방제 해충에 선택적으로 생물활성을 나타내는 균주를 선발하기 위하여 작물재배 지역의 토양으로부터 채취한 115개의 토양샘플 중 46개의 Bacillus thuringiensis 균주를 분리하였다. 이러한 B. thuringiensis균주를 사용하여 난방제 농업해충에 생물활성을 검정한 결과 배추좀나방(Plutella xylostella)에 CAB119을 포함한 35균주, 파밤나방(Spodoptera litura)에는 CAB128, CAB141균주가, 담배거세미나방(Spodoptera exigua)은 CAB133과 CAB159균주가 효과를 나타냈으며 CAB162균주는 3종류의 모든 해충에 높은 활성을 보였다. 분리된 B. thuringiensis CAB133 균주는 H serotype에 의한 혈청학적 동정과 SDS-PAGE를 통한 독소 단백질 패턴에서 B. thuringiensis subsp. kurstaki (3abc)로 동정되었다. 담배거세미나방 2령 유충에 대한 활성검정의 결과 B. thuringiensis subsp. kurstaki (3abc) CAB133, CAB162의 두 균주에 대한 $LD_{50}$ 값은 각각 0.089, $3.144{\mu}g/ml$로 높은 활성을 나타났다. 담배거세미나방의 령기에 따른 생물실험에서 CAB133 균주 $1.5{\times}10^6(cfu/ml)$에서 1령의 경우 3일, 2령은 5일에 100%의 사충율을 보였다. 담배거세미나방의 경우 B. thuringiensis를 섭식 후 먹기를 중단하여 성장이 멈추면서 $5{\times}7$일 후에 사망하였다. 그러므로 B. thuringiensis의 결정성독소단백질$(1.267{\mu}g/ml)$를 섭식하고 성장하지 못하는 담배거세미나방 유충의 무게는 대조군보다 5일후 약 30배정도 차이로 나타나서 사망하였다.

Keywords

References

  1. Apaydin, O., A.F. Yenidunya, S. Harsa and H. Gunes. 2005. Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World J. Microbiol. Biotechnol. 21: 285-292 https://doi.org/10.1007/s11274-004-3633-y
  2. Arson, A.I. 1993 The two faces of Bacillus thuringiensis; insecticidal proteins and post-exponential survival. Mol. Microbiol. 7: 489-496 https://doi.org/10.1111/j.1365-2958.1993.tb01139.x
  3. Bae, S.D., Park K.B. and Oh Y.J. 1997. Effect of temperature and food source on the egg and larval development of tobacco cutworm, Spodoptera litura Fabricius. Korean F. Appl. Entomol. 36(1): 48-54
  4. Bae, S.D., Choi B.R. Song Y.H. and Kim H.F. 2003. Insecticide susceptibility in the different larva of tobacco cutworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae) collected in the soybean fields of Milyang, Korea. Kor. J. Appl. Entomol. 42: 225-231
  5. Chilcott C.N. and P.J. Wigley. 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. F. Invertbr. Pathol. 61: 244-247 https://doi.org/10.1006/jipa.1993.1047
  6. Choi, J.R., W.R. Song, S.Y. Hwang, H.S. Kim and J.O. Lee. 1996. Age-related susceptibility of Spodoptera litura larvae to some insecticides. Korean J. Appl. Entomol. 35: 249-253
  7. Dulmage, H.T. and K. Aizawa. 1982. Distribution of Bacillus thuringiensis in nature. In E. Kurstak (ed) Microbial and viral pesticides. Marcel Dekker, Inc., New York, pp 209-237
  8. Finney, D.J. 1971. Probit analysis, estimation of the median effective dose. Cambridge University Press. London. 19-47
  9. Garad, G.P., P.R. Shivpuje and G.G. Bilapate. 1984. Life fecundity tables of Spodoptera litura Fabricius on different hosts. Proc. Indian Acad. Sci. (Anim Sci.). 93: 29-33
  10. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636 https://doi.org/10.1146/annurev.en.37.010192.003151
  11. Horikiri, M. 1964. Bionomics and control of tabacco cutworm, Spodoptera litura Fabricius. Plant Quarantine 18: 269-274
  12. Kim, C.H. and H.Y. Shin. 1987. Studies on bionomics and control tobacco cutworm, Spodoptera litura Fabricius in southern part of Korea. F. Inst. Agr. Res. Util. Gyeongsang National. Univ. 21: 105-122
  13. Kim, D.A., J.S. Kim, M.R. Kil, Y.N. Youn, D.S. Park and Y.M. Yu. 2006. Isolation and activity of insect pathogenic Bacillus thuringiensis strain from soil. Kor. J. Appl. Entomol. 45(3): 357-362
  14. Kim, H.S., D.W. Lee, H.W. Park, Y.M. Yu, J.I. Kim and S.K. Kang. 1995c. Distribution and characterization of Bacillus thuringiensis isolated form soils of sericultural farms in Korea. Korean J. Seric. Sci., 37(1): 57-61
  15. Kim, H.S., H.W. Park, D.W. Lee, Y.M. Yu and S.K. Kang. 1995a. Characterization of Bacillus thuringiensis isolated in granary dust. Kor. J. Apple. Entomol., 34(3): 243-248
  16. Kim, H.S., H.W. Park, D.W. Lee, Y.M. Yu, J.I. Kim and S.K. Kang. 1995b. Distribution and characterization of Bacillus thuringiensis isolated form soil in Korea. Kor. J. Apple. Entomol., 34(4): 344-349
  17. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Lecadet, M.M. and D. Martouret. 1967. The enzymatic hydrolysis of Bacillus thuringiensis berliner crystals, and the liberation of toxic fractions of bacterial origin by the cycle of Pieris brassicae (Linnaeus). J. Invertebr. Pathol. 7: 105-108 https://doi.org/10.1016/0022-2011(65)90163-1
  19. Maeda, M., C. Mizuki, Y. Nakamura, T. Hatano, and M. Ohba. 2000 Recovery of Bacillus thuringiensis from marine sediments of Japan. Current Microbiol. 40: 413-422
  20. Martin P.A.W. and R.S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
  21. Minamikawa, H. 1937. Survey on the tobacco cutworm, Spodoptera litura Fabricius Taiwan Central Res. Ins. Agr. Report 70: 1-66
  22. Mochida, O. and T. Okada. 1974. A bibliography of Spodoptera spp. (Lepidoptera: Noctuidae). Misc. Bull. Kyushu Nat. Agr. Expt. Sta. 49: 1-110
  23. Ohba M. and K. Aizawa. 1978. Physiology of spore forming bacteria associated with insects minimal nutritional requirements for growth sporulation and parasporal crystal formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 28: 124-128
  24. Raymond, M. 1985. Presentation d'un programme d'analyse logprobit pour micro-ordinnateur. Cah. ORSTOM, Ser. Ent. Med. et Parasitol. 22: 117-121
  25. Schnepf, H.E. 1995. Bacillus thuringiensis toxins; regulation, activities and structural diversity. Curr. Opin. Biotech. 6: 305-312 https://doi.org/10.1016/0958-1669(95)80052-2
  26. Smith R.A. and G.A. Couche. 1991. The phylloplane as a source of Bacillus thuringiensis. Appl. Environ. Bicrobiol. 57: 311-315
  27. Tabashnik, B.E., N.L. Cushing, N. Finson, M.W. Johnson. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83: 1671-1676 https://doi.org/10.1093/jee/83.5.1671
  28. Tanada, Y. and H.K. Kaya. 1993. Insect pathology, Academic Press, Sandiego, pp. 90-91
  29. Yamamoto, T. and R.E. McLaughin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorliymchus. Biochem, Biophs. Res. Commun. 103: 414-421 https://doi.org/10.1016/0006-291X(81)90468-X
  30. Zhong, C., D.J. Ellar, A. Bishop, C. Johnson, S. Lin and E.R. Hart. 2000. Characterization of a Bacillus thuringiensis ${\delta}$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol 76: 131-139 https://doi.org/10.1006/jipa.2000.4962
  31. Zouari, N. and J. Samir, 1997. Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechol. Lett. 19(8): 825-829 https://doi.org/10.1023/A:1018364915612