DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC

PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성

  • Hyun, Si-Cheol (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 현시철 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2017.12.08
  • Accepted : 2018.02.28
  • Published : 2018.03.30

Abstract

In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

리튬이온전지의 음극활물질로 사용되는 $Li_4Ti_5O_{12}$를 건식 볼밀법으로 합성하였고, $Li_4Ti_5O_{12}$의 전기화학적 특성을 향상시키기 위하여 탄소소재인 polyvinyl chloride (PVC)를 첨가하였다. PVC는 $Li_4Ti_5O_{12}$를 합성하고 난 후에 첨가하였을 때 스피넬 구조를 갖는 물질이 잘 합성되었음을 X-ray diffraction (XRD) 실험으로 확인하였다. 합성하기 전에 탄소재를 첨가하여 열처리를 한 경우에는 탄소재가 미량 첨가되더라도 다른 결정구조의 물질이 합성되는 것을 확인할 수 있었다. 탄소재를 첨가하지 않은 $Li_4Ti_5O_{12}$의 경우 전기전도도 값이 약 $10{\mu}S\;m^{-1}$으로 부도체에 가까운 매우 작은 값을 보였다. 탄소를 첨가함에 따라서 전기전도도가 크게 향상되었으며, 압력을 증가시킬 경우에 최대 10,000배 이상 증가되었다. Electrochemical impedance spectroscopy (EIS) 분석결과 탄소를 첨가할 경우 저항에 해당하는 반원의 크기가 감소하였으며, 이는 전극내의 저항이 감소하였음을 보여준다. Cyclic voltammetry (CV) 분석에 의하면 탄소를 첨가할 경우에 산화피크와 환원피크의 전위차가 줄어 들었으며, 이는 리튬이온의 삽입과 탈리의 속도가 증가하였음을 의미한다. PVC를 9.5 wt% 첨가한 물질의 경우, 0.2 C-rate에서 $180mA\;h\;g^{-1}$, 0.5 C-rate에서 $165mA\;h\;g^{-1}$, 5C-rate에서 $95.8mA\;h\;g^{-1}$의 용량을 나타냄으로써 우수한 출력 특성을 보여주었다.

Keywords

References

  1. Li, X. P., and Mao, J., "Sol-hydrothermal Synthesis of $Li_4Ti_5O_{12}$/rutile-$TiO_2$ Composite as High Rate Anode Material for Lithium Ion Batteries," Ceram. Int., 40(8), Part B, 13553-13558 (2014). https://doi.org/10.1016/j.ceramint.2014.05.066
  2. Harada, Y., Hoshina, K., Inagaki, H., and Takami, N., "Influence of Synthesis Conditions on Crystal Formation and Electrochemical Properties of $TiO_2(B)$ Particles as Anode Materials for Lithium-Ion Batteries," Electrochim. Acta, 112, 310-317 (2013). https://doi.org/10.1016/j.electacta.2013.08.148
  3. Singhal, A., Skandan, G., Amatucci, G., Badway, F., Ye, N., Manthiram, A., Ye, H., and Xu, J. J., "Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices," J. Power Sources, 129, 38-44 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.010
  4. Exnar, I., Kavan, L., Huang, S. Y., and Gratzel, M., "Novel 2 V Rocking-Chair Lithium Battery Based on Nano-Crystalline Titanium Dioxide," J. Power Sources, 68, 720-722 (1997). https://doi.org/10.1016/S0378-7753(96)02581-5
  5. Kim, D. H., Ahn, Y. S., and Kim, J., "Polyol-Mediated Synthesis of $Li_4Ti_5O_{12}$ Nanoparticle and its Electrochemical Properties," Electrochem. Commun, 7, 1340-1344 (2005). https://doi.org/10.1016/j.elecom.2005.09.027
  6. Hao, Y. J., Lai, Q. Y., Xu, Z. H., Liu, X. Q., and Ji, X. Y., "Synthesis by TEA Sol-Gel Method And Electrochemical Properties of $Li_4Ti_5O_{12}$ Anode Material for Lithium-Ion Battery," Solid State Ionics, 176, 1201-1206 (2005). https://doi.org/10.1016/j.ssi.2005.02.010
  7. Robertson, A. D., Trevino, L., Tukamoto, H., and Irvine, J. T. S., "New Inorganic Spinel Oxides for use as Negative Electrode Materials in Future Lithium-Ion Batteries," J. Power Sources, 81-82, 352-357 (1999). https://doi.org/10.1016/S0378-7753(98)00217-1
  8. Kubiak, P., Garcia, A., Womes, M., Aldon, L., Olivier-Fourcade, J., Lippens, P. E., and Jumas, J. C., "Phase Transition in the Spinel $Li_4Ti_5O_{12}$ Induced by Lithium Insertion Influence of the Substitutions Ti/V, Ti/Mn, Ti/Fe," J. Power Sources, 119-121, 626-630 (2003). https://doi.org/10.1016/S0378-7753(03)00186-1
  9. Huang, S. H., Wen, Z. Y., Gu, Z. H., and Zhu, X. J., "Preparation and Cycling Performance of $Al^{3+}$ and F- Co-Substituted Compounds $Li_4Al_xTi_{5-x}F_yO_{12-y}$," Electrochim. Acta, 50, 4057-4062 (2005). https://doi.org/10.1016/j.electacta.2004.12.036
  10. Lee, H. Y., Baek, J. K., Jang, S. W., Lee, S. M., Hong, S. T., Lee, K. Y., and Kim, M. H., "Characteristics of Carbon-Coated Graphite Prepared from Mixture of Graphite and Polyvinylchloride as Anode Materials for Lithium Ion Batteries," J. Power Sources, 101(2), 206-212 (2001). https://doi.org/10.1016/S0378-7753(01)00671-1
  11. Huang, J. J., and Jiang, Z. Y., "The Preparation and Characterization of $Li_4Ti_5O_{12}$/carbon Nano-Tubes for Lithium Ion-battery," Electrochim. Acta, 53, 7756-7759 (2008). https://doi.org/10.1016/j.electacta.2008.05.031
  12. Rasul, S., Suzuki, S., Yamaguchi, S., and Miyayama, M., "High Capacity Positive Electrodes for Secondary Mg-Ion Batteries," Electrochim. Acta, 82, 243-249 (2012). https://doi.org/10.1016/j.electacta.2012.03.095
  13. Hong, C. H., Noviyanto, A., Ryu, J. H., Kim, J. M., and Yoon, D. H., "Effects of the Starting Materials and Mechanochemical Activation on the Properties of Solid-State Reacted $Li_4Ti_5O_{12}$ for Lithium Ion Batteries," Ceram. Int., 38(1), 301-310 (2012). https://doi.org/10.1016/j.ceramint.2011.07.007
  14. Li, F., Chen, P., Wu, H., and Zhang, Y., "Cooperative Enhancement of Electrochemical Properties in Double Carbon-Decorated $Li_4Ti_5O_{12}$/C Composite as Anode for Li-Ion Batteries," J. Alloy. Compd., 633, 443-447 (2015). https://doi.org/10.1016/j.jallcom.2015.01.263
  15. Zhang, J., Cai, Y., Wu, J., and Yao, J., "Graphene Oxide-Confined Synthesis of $Li_4Ti_5O_{12}$ Microspheres as High-Performance Anodes for Lithium Ion Batteries," Electrochim. Acta, 165, 422-429 (2015). https://doi.org/10.1016/j.electacta.2015.03.016
  16. Pohjalainen, E., Kallioinen, J., and Kallio, T., "Comparative Study of Carbon Free and Carbon Containing $Li_4Ti_5O_{12}$ Electrodes," J. Power Sources, 279, 481-486 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.111
  17. Inagaki, M., Miura, H., and Konno, H., "A New Simple Process for Carbon Coating of Ceramic Particles Using Poly(vinyl chloride)," J. Eur. Ceram. Soc., 18(8), 1011-1015 (1998). https://doi.org/10.1016/S0955-2219(97)00176-3
  18. Fong, C., Kennedy, B. J., and Elcombe, M. M., "A Powder Neutron Diffraction Study of ${\lambda}$ and ${\gamma}$ Manganese Dioxide and of $LiMn_2O_4$," Z. Kristallogr., 209, 941-945 (1994).
  19. Li, X., Huang, P., Zhou, Y., Peng, H., Li, W., Qu, M., and Yu, Z., "A Novel $Li_4Ti_5O_{12}$/Graphene/Carbon Nano-Tubes Hybrid Material for High Rate Lithium Ion Batteries," Mater. Let., 133, 289-292 (2014). https://doi.org/10.1016/j.matlet.2014.07.008
  20. Zhu, Y. R., Wang, P., Yi, T. F., Deng, L., and Xie, Y., "Improved High-Rate Performance of $Li_4Ti_5O_{12}$/Carbon Nanotube Nanocomposite Anode for Lithium-Ion Batteries," Solid State Ionics, 276, 84-89 (2015). https://doi.org/10.1016/j.ssi.2015.04.001
  21. Liu, W., Wang, Q., Cao, C., Han, X., Zhang, J., Xie, X., and Xia, B., "Spray Drying of Spherical $Li_4Ti_5O_{12}$/C Powders Using Polyvinyl Pyrrolidone as Binder and Carbon Source," J. Alloy. Compd., 621, 162-169 (2015). https://doi.org/10.1016/j.jallcom.2014.09.121
  22. Gregory, T. D., Hoffman, R. J., and Winterton, R. C., "Nonaqueous Electrochemistry of Magnesium," J. Electrochem. Soc., 137, 775-780 (1990). https://doi.org/10.1149/1.2086553
  23. Spahr, M. E., Novak, P., Haas, O., and Nesper, R., "Electrochemical Insertion of Lithium, Sodium, and Magnesium in Molybdenum(VI) Oxide," J. Power Sources, 54, 2, 346-351 (1995). https://doi.org/10.1016/0378-7753(94)02099-O
  24. Kubiak, P., Garcia, A., Womes, M., Aldon, L., Olivier-Fourcade, J., Lippens, P. E., and Jumas, J. C., "Phase Transition in the Spinel $Li_4Ti_5O_{12}$ Induced by Lithium Insertion Influence of the Substitutions Ti/V, Ti/Mn, Ti/Fe," J. Power Sources, 119-121, 626-630 (2003). https://doi.org/10.1016/S0378-7753(03)00186-1
  25. Shi, Y., Wen, L, F., and Cheng, H.-M, "Nanosized $Li_4Ti_5O_{12}$/Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteris," J. Power Sources, 196, 8610-8617 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.002