• 제목/요약/키워드: cross-ply laminated composite

검색결과 101건 처리시간 0.02초

저속 충격시 고차이론을 이용한 복합 재료 판의 동적 특성 (Dynamic Characteristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higer order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. This is accomplished by using a stress recovery technique using the in-plane stresses. The results compared with previous investigations showed good agreement. It can be seen that this method of analyzing impact problems is more efficient than current three dimensional methods in terms of time and expense.

  • PDF

적층복합평판을 위한 고차해석이론 (A Higher-Order Theory for Laminated Composite Plates)

  • 신용석
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.65-76
    • /
    • 1994
  • A higher-oder laminated plate theory including the effect of transverse shear deformation is developed to calculate the gross response and the detailed stress distribution. The theory satisfies the continuity condition of transverse shear stress, and accounts for parabolic variation of the transverse shear stresses through the thickness of each layer. Exact closed-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and a simple higher-order theory solutions. The results of the present work exhibit acceptable accuracy when compared to the three-dimensional elasticity solutions.

비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답 (Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory)

  • 윤석호;한성천;장석윤
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.333-340
    • /
    • 1997
  • 본 연구에서는 복합재료로 구성된 복합적층판 및 쉘에 대하여 3차 전단 변형이론을 이용한 변위를 가정하여 단순지지 경계조건을 만족하는 변위형상함수를 퓨리예급수로 전개하고 동적 평형 방정식을 유도하여 뉴마크의 수치적분법을 사용하여 단면특성계수, 재료의 특성, 층의 배열에 따른 복합적층판 및 쉘의 비감쇄 동적응답특성을 연구하였다.

  • PDF

Free-edge effect in cross-ply laminated plates under a uniform extension

  • Sheng, Hongyu;Ye, Jianqiao
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.377-388
    • /
    • 2004
  • Based on the basic equations of elasticity, free-edge effects on stresses in cross-ply laminated plates are found by using the state space method. The laminates are subjected to uniaxial-uniform extension plate, which is a typical example of general plane strain problem. The study takes into account material constants of all individual material layers and the state equation of a laminate is solved analytically in the through thickness direction. By this approach, a composite plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The solution provides a continuous displacement and inter-laminar stress fields across all material interfaces and an approxiamte prediction to the singularity of stresses occurring in the boundary layer region of a free-edge. Numerical solutions are obtained and compared with the results obtained from an alternative numerical method.

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

저속 충격시 고차이론을 이용한 복합재료 판의 동적 특성 (Dynamic Charateristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.42-48
    • /
    • 1997
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higher order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. The results compared with previous investigations showed good agreement. The effect of ply sequence and ply angle on the contact force is also studied.

  • PDF

복합재 내압선체의 좌굴압력에 관한 유한요소해석 (Finite Element Analysis on Buckling Pressure of Composite Pressure Hull)

  • 조종래;정해영;권진회;최진호;조윤식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.212-213
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for URN 300. We predicted the buckling and post buckling analysis of composite laminated cylindrical shell and panel under external compression by using ABAQUS/Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have four different lamination patterns, [${\pm}{\Theta}$/0/90]$_{14s}$,[${\pm}{\Theta}_{14}$/$0_{14}$/$90_{14}$],[${\pm}$45/0/90]$_{18s}$ and [/0/90]$_{18s}$. At the result of this study, the optimized ply orientation angle is $75^{\circ}$. The critical load from experiment is 69% of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressure.

  • PDF

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.