• Title/Summary/Keyword: cross-coherence

Search Result 95, Processing Time 0.027 seconds

Factors of Intention to take Hormone Replacement therapy in korean Menopausal Women (폐경기 여성의 호르몬 대체요법 선택의도에 영향을 미치는 요인)

  • Chung, Chae-Weon
    • Women's Health Nursing
    • /
    • v.9 no.4
    • /
    • pp.369-378
    • /
    • 2003
  • Purpose: To identify factors influencing women's intention to take hormone replacement therapy(HRT). Method: A cross-sectional survey design was utilized. A total of 116 married women aged 40 to 60 were recruited from women's groups in communities. They completed a structured questionnaire containing demographic characteristics, Orientation to Life Questionnaire, Menopausal Symptom Checklist, Health Belief of Korean Adult, Sexrole Idea of Kim, Dong-il, chronic illnesses, and a single item measuring marital satisfaction. Result: Thirteen percents of the women were currently taking HRT and 28.4% had intention to take HRT. Education, sense of coherence, and sex role attitude were related to women's susceptibility to menopause. Hysterectomy status and the level of sense of coherence explained women's perception of seriousness regarding menopause. In addition, chronic health conditions accounted for the variances of benefits and barriers to HRT. Factors influencing women's intention to take HRT were education, menopausal symptoms, and perceived benefits of HRT. Conclusion: Women's chronic health conditions, psychosocial characteristics as well as menopausal discomforts were associated with women's choice regarding HRT. Other factors related to decision making process of women's health seeking behaviors need to be explored.

  • PDF

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

Extraction of the mode shapes of a segmented ship model with a hydroelastic response

  • Kim, Yooil;Ahn, In-Gyu;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.979-994
    • /
    • 2015
  • The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

Cross-Correlation of Oscillations in A Fragmented Sunspot

  • Lee, Kyeore;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.3-46
    • /
    • 2018
  • Oscillations in a sunspot are easily detected through the Doppler velocity observation. Although the sunspot oscillations look erratic, the wavelet analysis show that they consist of successive wave packets which have strong power near three or five minutes. Previous studies found that 3-min oscillation at the chromosphere is a visual pattern of upward propagating acoustic waves along the magnetic field lines. Resent multi-height observations help this like vertical study, however, we also focus on horizontal facet to extend three dimensional understand of sunspot waves. So, we investigate a fragmented sunspot expected to have complex wave profiles according to the positions in the sunspot observed by the Fast Imaging Solar Spectrograph. We choose 4 points at different umbral cores as sampling positions to determine coherence of oscillations. The sets of cross-correlation with three and five minutes bandpass filters during a single wave packet reveal interesting results. Na I line show weak correlations with some lags, but Fe I and Ni I have strong correlations with no phase difference over the sunspots. It is more remarkable at Ni I line with 3-min bandpass that all sets of cross-correlation look like the autocorrelation. We can interpret this as sunspot oscillations occur spontaneously over a sunspot at photosphere but not at chromosphere. It implies a larger or deeper origin of 3-min sunspot oscillation.

  • PDF

Modeling of ambient noise in ocean environment using coupled mode (연성모드법을 이용한 해양 배경소음 모델링)

  • Park, Jungyong;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.397-409
    • /
    • 2022
  • A model is developed for the calculation of sea surface generated ambient noise in the range dependent ocean environment. The sources are located in the horizontal plane all around and their depths are at the near-surface. The receiver array is located in the range dependent ocean waveguide. One-way coupled mode method is used to model the acoustic propagation between the sources and receiver in the range dependent waveguide, and the cross spectral density matrix of noise is derived. In simulation, noise intensity, beamforming result and coherence function are calculated from the cross spectral density matrix. These results are compared with those in the range independent environment. The modeling result shows the effect of the vertical directionality and asymmetry characteristics of the horizontal plane.

Assessment of Early Dental Caries by Using Optical Coherence Tomography (Optical Coherence Tomography를 이용한 초기 치아우식 검사)

  • Min, Ji-Hyun
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.257-262
    • /
    • 2016
  • The purpose of this study was to assess the correlation between integrated mineral loss (volume % mineral${\times}{\mu}m$, ${\Delta}Z_{TMR}$) determined using transverse microradiography (TMR) and integrated reflectivity ($dB{\times}{\mu}m$, ${\Delta}R_{OCT}$) determined using optical coherence tomography (OCT) for detecting early dental caries with lesion depth more than $200{\mu}m$. Sixty tooth specimens were made from sound bovine teeth. They were immersed in a demineralized solution for 20, 30, and 40 days. The ${\Delta}R_{OCT}$ was obtained from the cross-sectional OCT image. The ${\Delta}Z_{TMR}$ was obtained from the TMR image. The correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was examined using Pearson correlation. The Bland-Altman plot was constructed using the ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ values. A significant correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was confirmed (r=0.491, p=0.003). Moreover, most of the difference between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was included in the error section of the Bland-Altman plot. Therefore, OCT could be used as a substitute for TMR when analyzing mineral loss in early dental caries.

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis (기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징)

  • Kwon, Daa young;Oak, Chulho;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.243-248
    • /
    • 2019
  • The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..