DOI QR코드

DOI QR Code

Modeling of ambient noise in ocean environment using coupled mode

연성모드법을 이용한 해양 배경소음 모델링

  • Received : 2022.04.22
  • Accepted : 2022.05.16
  • Published : 2022.07.31

Abstract

A model is developed for the calculation of sea surface generated ambient noise in the range dependent ocean environment. The sources are located in the horizontal plane all around and their depths are at the near-surface. The receiver array is located in the range dependent ocean waveguide. One-way coupled mode method is used to model the acoustic propagation between the sources and receiver in the range dependent waveguide, and the cross spectral density matrix of noise is derived. In simulation, noise intensity, beamforming result and coherence function are calculated from the cross spectral density matrix. These results are compared with those in the range independent environment. The modeling result shows the effect of the vertical directionality and asymmetry characteristics of the horizontal plane.

본 논문에서는 거리 종속환경에서 해수면에 의한 배경소음 모델링을 수행하였다. 모델링 환경에서 음원은 해수면 근처에서 수평 방향의 전 영역에서 위치하고, 수신기 배열은 거리 종속환경의 해양 도파관 내에 위치하였다. 거리 종속환경에서의 소음원과 수신기 간의 음파전달은 연성모드법을 사용하여 계산되었으며, 이를 이용하여 수신기 간 상호 스펙트럴 밀도행렬 식을 유도하였다. 계산된 상호 스펙트럴 밀도행렬은 소음 인텐시티, 빔형성 결과, 코히런스 함수를 계산하는 데 사용되었으며, 그 결과를 거리 독립환경에서의 결과와 비교하였다. 이를 통해 해저면 특성에 의한 수직 방향성과 거리 종속환경에 의한 수평면상의 비대칭성 특성이 모델링 결과에 반영됨을 확인하였다.

Keywords

Acknowledgement

본 논문은 한국해양과학기술원의 연구과제인 "연안지역 해양과학탐사 기술개발(해양음향)" (PM63013)과 "관할해역 첨단 해양과학기지 구축 및 융합연구" (PM62840)의 지원을 받아 수행하였음.

References

  1. R. M. Hamson, "The modelling of ambient noise due to shipping and wind sources in complex environments," Appl. Acoust. 51, 251-287 (1997). https://doi.org/10.1016/S0003-682X(97)00003-0
  2. W. M. Carey and R. B. Evans. Ocean Ambient Noise: Measurement and Theory (Springer Science + Business Media, New York, 2011), Chap. 5.
  3. G. M. Wenz, "Acoustic ambient noise in the ocean: Spectra and sources," J. Acoust. Soc. Am. 34, 1936- 1956 (1962). https://doi.org/10.1121/1.1909155
  4. D. J. Kewley, D. G. Browning, and W. M. Carey, "Low-frequency wind-generated ambient noise source levels," J. Acoust. Soc. Am. 88, 1894-1902 (1990). https://doi.org/10.1121/1.400212
  5. S. Cho, S. Kim, D. Kang, and J. Park, "Wind-dependent ambient noise level estimation in shallow water using wind speed data," Ocean. Eng. 223, 108653-1-7 (2021). https://doi.org/10.1016/j.oceaneng.2021.108653
  6. M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103. (2012). https://doi.org/10.1121/1.3664100
  7. A. Tsouvalas, "Underwater noise emission due to offshore pile installation: A review," Energies, 13, 3037 (2020). https://doi.org/10.3390/en13123037
  8. G. B. Deane, M. J. Buckingham, and C. T. Tindle, "Vertical coherence of ambient noise in shallow water overlying a fluid seabed," J. Acoust. Soc. Am. 102, 3413-3424 (1997). https://doi.org/10.1121/1.419583
  9. H. Kwon, J. Kim, J.W. Choi, D. Kang, S. Cho, S.-K. Jung, and K. Park, "Spatial coherence analysis of underwater ambient noise measured at the Yellow Sea" (in Korean), J. Acoust. Soc. Kr. 34, 432-443 (2015). https://doi.org/10.7776/ASK.2015.34.6.432
  10. W. A. Kuperman and F. Ingenito, "Spatial correlation of surface generated noise in a stratified ocean," J. Acoust. Soc. Am. 67, 1988-1996 (1980). https://doi.org/10.1121/1.384439
  11. C. H. Harrison, "Formulas for ambient noise level and coherence," J. Acoust. Soc. Am. 99, 2055-2066 (1996). https://doi.org/10.1121/1.415392
  12. K. Lee and W. Seong, "Ray-based model for spatial coherence of ocean-surface-generated noise and its approximation in a triplet array," IEEE. J. Oceanic. Eng. 42, 199-207 (2016).
  13. K. Lee and W. Seong, "Mid-high frequency ocean surface-generated ambient noise model and its applications" (in Korean), J. Acoust. Soc. Kr. 35, 340-348 (2016). https://doi.org/10.7776/ASK.2016.35.5.340
  14. J. S. Perkins, W. A. Kuperman, F. Ingenito, L. T. Fialkowski, and J. Glattetre, "Modeling ambient noise in three-dimensional ocean environments," J. Acoust. Soc. Am. 93, 739-752 (1993). https://doi.org/10.1121/1.405437
  15. W. M. Carey, R. B. Evans, J. A. Davis, and G. Botseas, "Deep-ocean vertical noise directionality," IEEE. J. Oceanic. Eng. 15, 324-334 (1990). https://doi.org/10.1109/48.103528
  16. D. R. Barclay and Y. T. Lin, "Three-dimensional ambient noise modeling in a submarine canyon," J. Acoust. Soc. Am. 146, 1956-1967 (2019). https://doi.org/10.1121/1.5125589
  17. B. F. Cron and C. H. Sherman, Spat ial-correlation functions for various noise models," J. Acoust. Soc. Am. 34, 1732-1736 (1962). https://doi.org/10.1121/1.1909110
  18. H. Cox, "Spatial correlation in arbitrary noise fields with application to ambient sea noise," J. Acoust. Soc. Am. 54, 1289-1301 (1973). https://doi.org/10.1121/1.1914426
  19. S. C. Walker and M. J. Buckingham, "Spatial coherence and cross correlation of three-dimensional ambient noise fields in the ocean," J. Acoust. Soc. Am. 131, 1079-1086 (2012). https://doi.org/10.1121/1.3676700
  20. M. J. Buckingham, "Theory of the directionality and spatial coherence of wind-driven ambient noise in a deep ocean with attenuation," J. Acoust. Soc. Am. 134, 950-958 (2013). https://doi.org/10.1121/1.4812270
  21. N. Shajahan, D. R. Barclay, and Y. T. Lin, "Quantifying the contribution of ship noise to the underwater sound field," J. Acoust. Soc. Am. 148, 3863-3872 (2020). https://doi.org/10.1121/10.0002922
  22. R. B. Evans, "A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom," J. Acoust. Soc. Am. 74, 188-195 (1983). https://doi.org/10.1121/1.389707
  23. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer Science + Business Media, New York, 2012), pp. 113-117.
  24. F. B. Jensen, M. B. Porter, W. A. Kuperman, and H. Schdmidt, Computational Ocean Acoustics (Springer Science + Business Media, New York, 2011), pp. 147-148, 402-408, 667-669, 714-716.
  25. M. B. Porter, "The KRAKEN normal mode program," Naval Research Lab, 1992.
  26. D. Rouseff and D. Tang, "Internal wave effects on the ambient noise notch in the East China Sea: Model/data comparison," J. Acoust. Soc. Am. 120, 1284-1294 (2006). https://doi.org/10.1121/1.2225458
  27. N. M. Carbone, G. B. Deane, and M. J. Buckingham, "Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column," J. Acoust. Soc. Am. 103, 801-813 (1998). https://doi.org/10.1121/1.421201
  28. C. H. Harrison and D. G. Simons, "Geoacoustic inversion of ambient noise: A simple method," J. Acoust. Soc. Am. 112, 1377-1389 (2002). https://doi.org/10.1121/1.1506365
  29. M. Siderius, C. H. Harrison, and M. B. Porter, "A passive fathometer technique for imaging seabed layering using ambient noise," J. Acoust. Soc. Am. 120, 1315-1323 (2006). https://doi.org/10.1121/1.2227371
  30. J. Ragland, S. Abadi, and K. Sabra, "Long-term noise interferometry analysis in the northeast Pacific Ocean," J. Acoust. Soc. Am. 151, 194-204 (2022). https://doi.org/10.1121/10.0009232
  31. J. Li, P. Gerstoft, M. Siderius, and J. Fan, "Inversion of head waves in ocean acoustic ambient noise," J. Acoust. Soc. Am. 147, 1752-1761 (2020). https://doi.org/10.1121/10.0000925