• Title/Summary/Keyword: cross-beams

Search Result 561, Processing Time 0.023 seconds

Dynamic Response Analysis of Composite H-Type Cross-Section Beams to Random Loads (랜덤하중이 가해진 복합재료 H-형 보의 동적 응답 해석)

  • Kim, Sung-Kyun;Song, Pong-Gun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.130-135
    • /
    • 2011
  • A study of the bending-extension-transverse shear coupled random response of the composite beams with thin-walled open sections subjected to various types of concentrated and distributed random excitations is dealt with in this paper. First of all, equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. On the basis of derived equations of motion, analytical expressions for the displacement response of the composite beams are derived by using normal mode method combined with frequency response function method.

  • PDF

Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section (두께가 얇은 단면을 갖는 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

Free Vibrations of Stepped Horizontally Curved Beams with Variable Curvature (불연속 변화단면 변화곡률 수평 곡선보의 자유진동)

  • 이태은;안대순;이병구;김권식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.858-863
    • /
    • 2003
  • In the practical engineering fields, the horizontally curved beams are frequently erected as the major/minor structural components. The effects of both variable curvature and variable cross-section on structural behavior are very important and therefore these effects should be included in structural analyses. From this viewpoint, this paper deals with the free vibrations of horizontally curved beams with variable curvature and variable cross-section. In this study, the parabola as the curvilinear shape and stepped beam as the variable cross-section are considered. The ordinary differential equation governing free vibrations of such beams are derived. For calculating the natural frequencies, the governing equations are solved by numerical methods. The Runge-Kutta and Determinant search Methods are used for integrating the differential equations and for calculating the natural frequencies, respectively. With regard to numerical results, the relationships between frequency parameters and various beam parameters are presented in the forms of Table and Figures.

  • PDF

Investigation of the Behavior of Lateral Load Distribution of Railway PSC Girder Bridges (철도 PSC빔교의 하중횡분배 거동에 관한 고찰)

  • Jung, Chan-Mook
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.422-428
    • /
    • 2011
  • This paper presents results from the theoretical analysis of the lateral load distribution for a railway bridge designed with PSC girders which is one of most popular types of bridge in Korea. Typically, 3 sets of intermediate cross beams within a span have been installed for lateral load distribution. In this paper, the effect on the lateral load distribution by the number of intermediate cross beams were examined by both simple grillage analysis and finite element method. This study showed that at least, one set of cross beams at midspan should be needed to ensure the proper load distribution. However, the effect of cross beams on the load distribution becomes not significant though more than one set of cross beams are installed. Therefore, only one set of cross beans at midspan is recommended for constructibility and economic efficiency.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

Vector and Scalar Modes in Coherent Mode Representation of Electromagnetic Beams

  • Kim, Ki-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • It is shown that the two mode representations, one with vector modes and the other with scalar modes, for the cross spectral density matrices of electromagnetic beams are equivalent to each other. In particular, we suggest a method to find the vector modes from the scalar modes and formulate the cross spectral density matrix as a correlation matrix.

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (II) - Calculation and Analysis of Ultimate Loads - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I 및 Box형(形) 보의 구조적(構造的) 성능(性能) 분석(分析) (II) - 최대하중(最大荷重)의 계산(計算) 및 해석(解析) -)

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-71
    • /
    • 1991
  • An evaluation of bending test of composite I and Box beams for determining the ultimate strength limit design criteria was presented. Maxium loads of composite I beams were found in beams composed of thicker upper flanges and/or vertical LVL flanges. These loads of plywood web beams were greater than those of PB web beams. Maximum loads of unsymmetrical box beams were less than those of symmetrical box beams. Thus, it took on different phase in box type beams. Ultimate loads of composite beams were greater than those of solid. The failure of composite beams were abrupt and failure mode was classified into following categories; Edgewise shear failure in web, delamination in flange-web joint, tension failure and tearing in LVL flanges, and web delamination. These failures of composite beams were appeared at the mixed mode. The influence factor affecting the performance of tested composite beams was shear strength of PB-web composite beams and compressive strength in plywood-web composite beams. It was also assumed that the influence factors on structural performance on composite beams were flange quality, web material and geometry of cross section. As one of the design methods resisting to compressive stress that was required in the case of small span to depth ratio and deep beams. composite I-beams composed of thicker upper flanges comparing to lower flanges were very effective in structural performance.

  • PDF

An initial investigation of the inverted trussed beam formed by wooden rectangular cross section enlaced with wire rope

  • Gesualdo, F.A.R.;Lima, M.C.V.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.239-255
    • /
    • 2012
  • This work presents a contribution to understand the inverted trussed beams behavior. The system has a main beam and struts with rectangular cross section associated to a wire rope enlaced to the main beam. It is an unpublished system with the advantage of easy positioning of the wire rope, once it is a continuous and connected by turnbuckles. It is a system that can be used as support for concrete formworks or for rehabilitation wooden beams proposal. The enlacement of the cable demands a small notch at the top of the cross section and a cross pin at the bottom. Six inverted trussed beams were tested, with spans of 180 cm with cables diameter of 1/4". Additionally, four simple beams without any external steel cable were also tested with material from the same lot of wood, allowing a comparison in rupture. The results showed capacity gain of around 60% compared to a simple beam. Once the wire rope characteristics and anchoring are very important for structure response, some improvement suggestions for the efficiency of the cables are also presented.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.