• Title/Summary/Keyword: critical failure surface

Search Result 128, Processing Time 0.023 seconds

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete (콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In this paper, a stress transfer mechanism between near surface-mounted (NSM) fiber reinforced polymer (FRP) plate and concrete was investigated and a reliable analytical procedure for it was presented by using bilinear bond-slip model simulating the bond behavior of NSM FRP plate. As a result, critical values in the bi-linear model such as maximum shear strength, slip at that time and failure slip at the initiation of softening de-bonding were suggested for being used in the differential equation considering he interfacial characteristic between NSM FRP and concrete. Also, it was found that the bond-slip behavior could be suitably redicted by using the proposed procedure even in the case of various bond lengths from the comparison with bond test result.

Analysis on the Fracture of a Panel Glass in a Liquid Crystal Display Module under Mechanical Shock (액정 디스플레이(LCD)의 패널유리 파손평가에 관한 연구)

  • Park, Sang-Hu;Lee, Bu-Yun;Eom, Yun-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.76-81
    • /
    • 2000
  • Analysis on failure of the panel glass under mechanical shock is the main topic of this study. Since the glass for the LCD panel is thin, it needs to be designed to have enough toughness against mechanical shock. In this paper, a process of estimating fracture of the panel glass is proposed to guarantee reliability of the product. The fracture toughness of the panel glass is used as a criterion of the fracture based on an experimental approach. The stress intensity factor was calculated considering a model with the largest initial crack size on a cut surface and with the boundary force obtained from a dynamic finite element analysis. Critical surface roughness on the cut surface of a typical glass panel, to prevent fracture in case of bending mode, is obtained.

  • PDF

Characteristics of AE Signals from Fatigue Crack Propagation and Penetration of a Surface Crack in 6061 Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Existing surface defects in structural members often act as sites of fatigue crack initiation, and if undetected, these cracks may grow through the thickness of the member, leading to catastrophic failure of the structure. Thus, in-service monitoring of fatigue cracks through reliable and effective nondestructive techniques is an important ingredient in the leak-before-break (LBB) design and safe operation of defects critical structures. An advanced, waveform-based, acoustic emission (AE) technique has been used in this paper to study the characteristics of the signals emanating from the initiation, growth and through-the -thickness penetration of surface fatigue crack in a 6061 aluminum plate. The goal of this experimental study is to determine whether the evolution of the fatigue crocks could be identified from the properties of the waveforms produced during the tests. The AE waveform signals detected at different stages of crack growth was found to have different temporal and spectral characteristics. The data analysis technique presented here can be applied to real-time monitoring of the initiation and propagation of fatigue cracks in structural components.

  • PDF

Mechanical Strength Experiment of Carbon/Carbon Composite for Aircraft Brake Disk (탄소/탄소 브레이크 디스크의 기계적 강도 시험에 관한 연구)

  • 유재석;오세희;김천곤;홍창선;윤병일;김광수
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.55-62
    • /
    • 2000
  • The strength test was done for the Carbon/Carbon rotor disk which is the critical part of a carbon/carbon brake system in an operating time. The loading fixture was designed for the static strength test of a single carbon/carbon brake disk using finite element analysis. To simulate the real dynamic system in a static condition, the friction surface of the rotor disk was fixed and static load was applied to the rotor slot in the circumferential direction. The described failure mechanism of the brake disk can be described as matrix cracking occurred first at the contact surface of the rotor slot, subsequent delamination from the cracked contact surface, and the final fracture at the notch of the rotor.

  • PDF

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Study on the flexural behavior of corroded built-up cold-formed thin-walled steel beams

  • Zhang, Zongxing;Xu, Shanhua;Li, Han;Li, Rou;Nie, Biao
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.353-369
    • /
    • 2020
  • Eight cold-formed thin-walled steel beams were performed to investigate the effect of corrosion damage on the flexural behavior of steel beams. The relationships between failure modes or load-displacement curves and corrosion degree of steel beams were investigated. A series of parametric analysis with more than forty finite element models were also performed with different corrosion degrees, types and locations. The results showed that the reduction of cross-section thickness as well as corrosion pits on the surface would lead to a decline in the stiffness and flexural capacity of steel beams, and gradually intensified with the corrosion degree. The yield load, ultimate load and critical buckling load of the corroded specimen IV-B46-4 decreased by 22.2%, 26% and 45%, respectively. The failure modes of steel beams changed from strength failure to stability failure or brittle fracture with the corrosion degree increasing. In addition, thickness damage and corrosion pits at different locations caused the degradation of flexural capacity, the worst of which was the thickness damage of compression zone. Finally, the method for calculating flexural capacity of corroded cold-formed thin-walled steel beams was also proposed based on experimental investigation and numerical analysis results.

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.