DOI QR코드

DOI QR Code

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process

공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구

  • Kang, Ji-Hoon (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Kwang-Seop (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Kyung-Woong (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 강지훈 (한국과학기술원 기계공학과) ;
  • 김광섭 (한국과학기술원 기계공학과) ;
  • 김경웅 (한국과학기술원 기계공학과)
  • Published : 2006.10.31

Abstract

Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Keywords

References

  1. S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Imprint of sub-25 nm vias and trenches in polymers,' Appl. Phys. Lett., Vol .67, No. 20, pp. 3114-3116, 1995 https://doi.org/10.1063/1.114851
  2. S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Nanoimprint lithography,' J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133, 1996 https://doi.org/10.1116/1.588605
  3. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, 'Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,' Appl. Phys. Lett., Vol. 84, No. 26, pp. 5299-5301, 2004 https://doi.org/10.1063/1.1766071
  4. Y. Hirai, S. Yoshida, N. Takagi, Y.Tanaka, H. Yabe, K. Sasaki, H. Sumitani and K. Yamamoto, 'Hgih aspect pattern fabrication by nanoimprint lithography using fine diamond mold,' Jpn. J. Appl. Phys., Vol. 42, pp. 3863-3866, 2003 https://doi.org/10.1143/JJAP.42.3863
  5. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt and C. G. Wilson, In SPIE's 24th Int. Symposium on Microlithography: Emerging Lithographic Technologies III, Santa Clara, CA, Vol. 3676(1), pp. 379, 1999
  6. H. C. Scheer and H. Schulz, 'A contribution to the flow behaviour of thin polymer films during hot embossing lithography,' Microelectronic Eng., Vol. 54, pp. 311-332, 2001
  7. D. S. Macintyre and S. Thoms, 'A study of resist flow during nanoimprint lithography,' Microelectronic Eng., Vol. 78-79, pp. 670-675, 2005 https://doi.org/10.1016/j.mee.2004.12.083
  8. G L. W. Cross, B. S. O'Connel and J. B. Pethica, 'Influence of elastic strains on the mask ratio in glassy polymer nanoimprint,' Appl. Phys. Lett., Vol. 86, 081902, 2004 https://doi.org/10.1063/1.1868074
  9. C. Martin, L. Ressier and J. P. Peyrade, 'Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,' Physica E, Vol. 17, pp. 523-525, 2003 https://doi.org/10.1016/S1386-9477(02)00859-7
  10. Y. Hirai, S. Yoshida and N. Takagi, 'Defect analysis in thermal nanoimprint lithography,' J Vac. Sci. Technol. B, Vol. 20, No. 6, pp. 2765-2770, 2003
  11. Y. Hirai, T. Konishi, T. Yoshikawa and S. Yoshida, 'Simulation and experimental study of polymer deformation in nanoimprint lithography,' J. Vac. Sci. Technol. B, Vol. 22, No. 6, pp. 3288-3293, 2004 https://doi.org/10.1116/1.1826058
  12. W. B. Young, 'Analysis of the nanoimprint lithography with a viscous model,' Microelectronic. Eng., Vol. 77, pp. 405-411, 2005 https://doi.org/10.1016/j.mee.2005.01.024
  13. S. Bair, C. McCabe and P. T. Cummings, 'Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shearthinning regime,' Phys. Rev. Lett., Vol. 88, No. 5, 058302., 2002 https://doi.org/10.1103/PhysRevLett.88.058302
  14. I. Szlufarska, R. K. Kalia, A. Nakano and P. Vashishta, 'Nanoindentation-induced amorphization in silicon carbide,' Appl. Phys. Lett., Vol. 85, No. 2, pp. 378-380, 2004 https://doi.org/10.1063/1.1774252
  15. R. Komanduri, N. Chandrasekaran and L. M. Raff, 'Molecular dynamics simulation of atomic-scale friction,' Phys. Rev. B, Vol. 61, No. 20, pp. 14007-14019, 2000 https://doi.org/10.1103/PhysRevB.61.14007
  16. Q. C. Hsu, C. D. Wu and T. H. Fang, 'Deformation mechanism and Punch taper effects on nanoimprint process by molecular dynamics,' Jpn. J. of Appl. Phys., Vol.43, No. 11A, pp. 7665-7669, 2004 https://doi.org/10.1143/JJAP.43.7665
  17. Q. C. Hsu, C. D. Wu and T. H. Fang, 'Studies on nanoimprint process parameters of copper by molecular dynamics analysis,' Comp. Mater. Sci., Vol. 34, pp. 314-322, 2005 https://doi.org/10.1016/j.commatsci.2005.01.004
  18. J. H. Kang, K. S. Kim and K. W. Kim, 'Molecular dynamics study of pattern transfer in nanoimprint lithography,' Tribo. Lett., in press, 2006
  19. W. L. Jorgensen, D. S. Maxwell and J. Tiroda-Rives, 'Development and testing of the OPLS all-atom force field on conformational energetics and proper ties of organic liquids,' J. Am. Chem. Soc., Vol. 118, pp. 11225-11236, 1996 https://doi.org/10.1021/ja9621760
  20. E. K. Watkins and W. L. Jorgensen, 'Perfluoroalkanes: Conformational analysis and liquid-state properties from ab ignition and Monte Carlo calculations,' J. Chem. Phys. A, Vol. 105, No. 16, pp. 4118-4125, 2001 https://doi.org/10.1021/jp004071w
  21. C. D. Lorenz, E. B. Webb III, M. J. Stevens, M. Chandross and G. S. Grest, 'Frictional dynamics of perfluorinated self-assembled monolayers on amorphous $SiO_2,'$ Tribo. Lett., Vol. 19, No. 2, pp.93-99, 2005 https://doi.org/10.1007/s11249-005-5085-4
  22. B. P. Feuston and S. H. Garofalini, 'Topological and bonding defects in vitreous silica surfaces,' J. Chem, Phys., Vol. 91, No. 1, pp. 564-570, 1989 https://doi.org/10.1063/1.457440
  23. B. W. H. van Beest, G. J. Kramer and R. A. van Santen, 'Force fields for silicas and aluminophosphates based on ab initio calculations,' Phys. Rev. Lett., Vol. 64, No. 16, pp. 1955-1958, 1990 https://doi.org/10.1103/PhysRevLett.64.1955
  24. S. Mukhopadhyay, P. V. Sushko, A. M. Stoneham and A. L. Shluger, 'Modeling of the structure and properties of oxygen vacancies in amorphous silica,' Phys. Rev. B, Vol. 70, Article No. 195203, 2004
  25. W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hunenberger, P. Kruger, A. E. Mark, W. R. P. Scott and I. G Tironi, 'Biomolecular simulation: The GROMOS96 manual and user guide,' Zurich, Switzerland: Hochschulverlag AG and der ETH zurich, 1996
  26. J. H. Kang, K. S. Kim and K. W. Kim, 'Molecular dynamics study on adhesion between PMMA and bare SiO_2/SiO_2$ coated with alkylsilane self-assembled mono layers,' J. Korean Soc. Mech. Eng A, submitted, 2005
  27. S. J. Plimpton, 'Fast parallel algorithms for shortrange molecular dynamics,' J. Comput. Phys., Vol. 117, No. 1, pp. 1-19, 1995 https://doi.org/10.1006/jcph.1995.1039
  28. N. C. Ekdawi-Sever, P. B. Conrad and J. J. de Pablo, 'Molecular simulation of sucrose solutions near the glass transition temperature,' J. Phys. Chem. A, Vol. 105, pp.734-742, 2001 https://doi.org/10.1021/jp002722i
  29. D. Rigby and R. J. Roe, 'Molecular dynamics simulation of polymer liquid and glass. I. Glass transition,' J. Chem. Phys., Vol. 87, 7285-7292, 1987 https://doi.org/10.1063/1.453321
  30. A. Soldera and N. Metatla, 'Study of the glass transition temperature of stereoregular PMMAs using different force fields,' Internet Elec. J. Mol. Design, Vol. 4, pp. 721-736, 2005
  31. Z. N. Yu and S. Y. Chou, 'Triangular profile imprint molds in nanograting fabrication,' Nano Lett., Vol. 4, No. 2, pp. 341-344, 2004 https://doi.org/10.1021/nl034947l