Browse > Article
http://dx.doi.org/10.9725/kstle.2006.22.5.243

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process  

Kang, Ji-Hoon (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Kwang-Seop (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Kyung-Woong (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Tribology and Lubricants / v.22, no.5, 2006 , pp. 243-251 More about this Journal
Abstract
Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.
Keywords
nanoimprint lithography; molecular dynamics simulation; process parameters; pattern transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Imprint of sub-25 nm vias and trenches in polymers,' Appl. Phys. Lett., Vol .67, No. 20, pp. 3114-3116, 1995   DOI   ScienceOn
2 Y. Hirai, S. Yoshida, N. Takagi, Y.Tanaka, H. Yabe, K. Sasaki, H. Sumitani and K. Yamamoto, 'Hgih aspect pattern fabrication by nanoimprint lithography using fine diamond mold,' Jpn. J. Appl. Phys., Vol. 42, pp. 3863-3866, 2003   DOI
3 C. Martin, L. Ressier and J. P. Peyrade, 'Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,' Physica E, Vol. 17, pp. 523-525, 2003   DOI   ScienceOn
4 Y. Hirai, S. Yoshida and N. Takagi, 'Defect analysis in thermal nanoimprint lithography,' J Vac. Sci. Technol. B, Vol. 20, No. 6, pp. 2765-2770, 2003
5 R. Komanduri, N. Chandrasekaran and L. M. Raff, 'Molecular dynamics simulation of atomic-scale friction,' Phys. Rev. B, Vol. 61, No. 20, pp. 14007-14019, 2000   DOI   ScienceOn
6 J. H. Kang, K. S. Kim and K. W. Kim, 'Molecular dynamics study of pattern transfer in nanoimprint lithography,' Tribo. Lett., in press, 2006
7 B. P. Feuston and S. H. Garofalini, 'Topological and bonding defects in vitreous silica surfaces,' J. Chem, Phys., Vol. 91, No. 1, pp. 564-570, 1989   DOI
8 Z. N. Yu and S. Y. Chou, 'Triangular profile imprint molds in nanograting fabrication,' Nano Lett., Vol. 4, No. 2, pp. 341-344, 2004   DOI   ScienceOn
9 Q. C. Hsu, C. D. Wu and T. H. Fang, 'Deformation mechanism and Punch taper effects on nanoimprint process by molecular dynamics,' Jpn. J. of Appl. Phys., Vol.43, No. 11A, pp. 7665-7669, 2004   DOI
10 W. L. Jorgensen, D. S. Maxwell and J. Tiroda-Rives, 'Development and testing of the OPLS all-atom force field on conformational energetics and proper ties of organic liquids,' J. Am. Chem. Soc., Vol. 118, pp. 11225-11236, 1996   DOI   ScienceOn
11 N. C. Ekdawi-Sever, P. B. Conrad and J. J. de Pablo, 'Molecular simulation of sucrose solutions near the glass transition temperature,' J. Phys. Chem. A, Vol. 105, pp.734-742, 2001   DOI   ScienceOn
12 M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, 'Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,' Appl. Phys. Lett., Vol. 84, No. 26, pp. 5299-5301, 2004   DOI   ScienceOn
13 W. B. Young, 'Analysis of the nanoimprint lithography with a viscous model,' Microelectronic. Eng., Vol. 77, pp. 405-411, 2005   DOI   ScienceOn
14 G L. W. Cross, B. S. O'Connel and J. B. Pethica, 'Influence of elastic strains on the mask ratio in glassy polymer nanoimprint,' Appl. Phys. Lett., Vol. 86, 081902, 2004   DOI   ScienceOn
15 B. W. H. van Beest, G. J. Kramer and R. A. van Santen, 'Force fields for silicas and aluminophosphates based on ab initio calculations,' Phys. Rev. Lett., Vol. 64, No. 16, pp. 1955-1958, 1990   DOI   ScienceOn
16 J. H. Kang, K. S. Kim and K. W. Kim, 'Molecular dynamics study on adhesion between PMMA and bare SiO_2/SiO_2$ coated with alkylsilane self-assembled mono layers,' J. Korean Soc. Mech. Eng A, submitted, 2005
17 D. S. Macintyre and S. Thoms, 'A study of resist flow during nanoimprint lithography,' Microelectronic Eng., Vol. 78-79, pp. 670-675, 2005   DOI
18 E. K. Watkins and W. L. Jorgensen, 'Perfluoroalkanes: Conformational analysis and liquid-state properties from ab ignition and Monte Carlo calculations,' J. Chem. Phys. A, Vol. 105, No. 16, pp. 4118-4125, 2001   DOI   ScienceOn
19 H. C. Scheer and H. Schulz, 'A contribution to the flow behaviour of thin polymer films during hot embossing lithography,' Microelectronic Eng., Vol. 54, pp. 311-332, 2001
20 M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt and C. G. Wilson, In SPIE's 24th Int. Symposium on Microlithography: Emerging Lithographic Technologies III, Santa Clara, CA, Vol. 3676(1), pp. 379, 1999
21 S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Nanoimprint lithography,' J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133, 1996   DOI   ScienceOn
22 S. J. Plimpton, 'Fast parallel algorithms for shortrange molecular dynamics,' J. Comput. Phys., Vol. 117, No. 1, pp. 1-19, 1995   DOI   ScienceOn
23 D. Rigby and R. J. Roe, 'Molecular dynamics simulation of polymer liquid and glass. I. Glass transition,' J. Chem. Phys., Vol. 87, 7285-7292, 1987   DOI
24 Y. Hirai, T. Konishi, T. Yoshikawa and S. Yoshida, 'Simulation and experimental study of polymer deformation in nanoimprint lithography,' J. Vac. Sci. Technol. B, Vol. 22, No. 6, pp. 3288-3293, 2004   DOI   ScienceOn
25 I. Szlufarska, R. K. Kalia, A. Nakano and P. Vashishta, 'Nanoindentation-induced amorphization in silicon carbide,' Appl. Phys. Lett., Vol. 85, No. 2, pp. 378-380, 2004   DOI   ScienceOn
26 C. D. Lorenz, E. B. Webb III, M. J. Stevens, M. Chandross and G. S. Grest, 'Frictional dynamics of perfluorinated self-assembled monolayers on amorphous $SiO_2, Tribo. Lett., Vol. 19, No. 2, pp.93-99, 2005   DOI
27 W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hunenberger, P. Kruger, A. E. Mark, W. R. P. Scott and I. G Tironi, 'Biomolecular simulation: The GROMOS96 manual and user guide,' Zurich, Switzerland: Hochschulverlag AG and der ETH zurich, 1996
28 Q. C. Hsu, C. D. Wu and T. H. Fang, 'Studies on nanoimprint process parameters of copper by molecular dynamics analysis,' Comp. Mater. Sci., Vol. 34, pp. 314-322, 2005   DOI   ScienceOn
29 A. Soldera and N. Metatla, 'Study of the glass transition temperature of stereoregular PMMAs using different force fields,' Internet Elec. J. Mol. Design, Vol. 4, pp. 721-736, 2005
30 S. Bair, C. McCabe and P. T. Cummings, 'Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shearthinning regime,' Phys. Rev. Lett., Vol. 88, No. 5, 058302., 2002   DOI   ScienceOn
31 S. Mukhopadhyay, P. V. Sushko, A. M. Stoneham and A. L. Shluger, 'Modeling of the structure and properties of oxygen vacancies in amorphous silica,' Phys. Rev. B, Vol. 70, Article No. 195203, 2004