• Title/Summary/Keyword: critical buckling moments

Search Result 19, Processing Time 0.027 seconds

Lateral-torsional buckling steel beams with simultaneously tapered flanges and web

  • Kus, Juliusz
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.897-916
    • /
    • 2015
  • A procedure for critical buckling moment of a tapered beam is proposed with the application of potential energy calculations using Ritz method. Respective solution allows to obtain critical moments initiating lateral buckling of the simply supported, modestly tapered steel I-beams. In particular, lateral-torsional buckling of beams with simultaneously tapered flanges and the web are considered. Detailed, numerical, parametric analyses are carried out. Typical engineering, uniformly distributed design loads are considered for three cases of the load, applied to the top flange, shear centre, as well as to the bottom flange. In addition simply supported beam under gradient moments is investigated. The parametric analysis of simultaneously tapered beam flanges and the web, demonstrates that tapering of flanges influences much more the critical moments than tapering of the web.

Out-of-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 외평면 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.189-195
    • /
    • 2002
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of out-of-plane bucking of curved beams. Critical moments including the effect of radial stresses are calculated for a single-span wide-flange beam subjected to equal and opposite in-plane bending moments with various end conditions, and opening angles. Results are compared with existing exact solutions where available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used. New results are given for two sets of boundary conditions not previously considered for this problem: clamped-clamped and clamped-simply supported ends.

In-Plane Buckling Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 내평면 좌굴해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2858-2864
    • /
    • 2012
  • The differential quadrature method (DQM) is applied to computation of the eigenvalues of in-plane buckling of the curved beams. Critical moments and loads are calculated for the beam subjected to equal and opposite bending moments and uniformly distributed radial loads with various end conditions and opening angles. Results are compared with existing exact solutions where available. The DQM gives good accuracy even when only a limited number of grid points is used. More results are given for two sets of boundary conditions not considered by previous investigators for in-plane buckling: clamped-clamped and simply supported-clamped ends.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

In-Plane Buckling of Prime and Quadratic Parabolic Arches with Fixed Ends (양단고정 Prime과 Quadratic 포물선 아치의 면내좌굴에 관한 연구)

  • 이병구;김종만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.

  • PDF

Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

  • Elmerabet, Abderrahmane Hadj;Heireche, Houari;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, the critical buckling temperature of single-walled Boron Nitride nanotube (SWBNNT) is estimated using a new nonlocal first-order shear deformation beam theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of SWBNNT and is based on assumption that the inplane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Results indicate the importance of the small scale effects in the thermal buckling analysis of Boron Nitride nanotube.

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects

  • Becheri, Tawfiq;Amara, Khaled;Bouazza, Mokhtar;Benseddiq, Noureddine
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1347-1368
    • /
    • 2016
  • In this article, an exact analytical solution for mechanical buckling analysis of symmetrically cross-ply laminated plates including curvature effects is presented. The equilibrium equations are derived according to the refined nth-order shear deformation theory. The present refined nth-order shear deformation theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments The most interesting feature of this theory is that it accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Buckling of orthotropic laminates subjected to biaxial inplane is investigated. Using the Navier solution method, the differential equations have been solved analytically and the critical buckling loads presented in closed-form solutions. The sensitivity of critical buckling loads to the effects of curvature terms and other factors has been examined. The analysis is validated by comparing results with those in the literature.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.