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Out-of-Plane Buckling Analysis of Curved Beams Using DQM
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Abstract : The differential quadrature method (DQM) is applied to computation of the eigenvalues of out-of-plane
buckling of curved beams. Critical moments including the effect of radial stresses are calculated for a single-span
wide-flange beam subjected to equal and opposite in-plane bending moments with various end conditions, and opening
angles. Results are compared with existing exact solutions where available. The differential quadrature method gives good
accuracy even when only a limited number of grid points is used. New results are given for two sets of boundary
conditions not previously considered for this problem: clamped-clamped and clamped-simply supported ends.
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account the effect of warping for a bisymmetrical
I-beam. Vlasov® derived closed-form solutions such as
for a beam, in which cross-sections are allowed to

1. Introduction

The common engineering theory of flexure is based

on the Bernoulli-Euler-Navier assumption that cross
sections, which are perpendicular to the centroid before
bending, remain plane and perpendicular to the
deformed locus. In contrast, torsion was considered to
be completely defined by the theory of Saint-Venant.
A crucial point in the Saint-Venant theory is that
warping deformations can occur freely and uniformly
throughout the beam (Yang and Kuo'. Ojalvo et al®.
studied the elastic stability of ring segments with a
thrust or a pull directed along the chord neglecting the
warping effect. Timoshenko and Gere” first took into
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warp non-uniformly along the beam axis, subject: to
in-plane bending moments. Cheney’ studied the
buckling of thin-walled open-section rings including
both the effect of axial stress and the effect of
warping. Papangelis and Trahair” conducted a
theoretical study of the flexural-torsional buckling of
doubly symmetric arches to confirm the predictions of
Timoshenko and Gere® for beams in uniform compre-
ssion and of Vlasov” for beams in uniform bending.
Trahair and Papangelis” also developed an out-of-plane
buckling theory for beams of monosymmetric cross-
section using the second variation of the total potential.
Yand and Kuo" studied the static stability of curved
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thin-walled beams using the principle of virtual
displacements in a Lagrangian formulation with
emphasis placed on the effect of curvature, and they
presented closed-form solutions for arches in uniform
bending and uniform compression. Recently, Han and
Kan ) studied the out-of-plane buckling of curved
beams without warping using the differential
quadrature method (DQM).

In the present work, the differential quadrature
method, introduced by Bellman and Casti”, is used
to analyze the out-of-plane stability of curved beams,
specifically, of a single-span, wide-flame beam
including a warping contribution. Critical moments are
calculated for the member subjected to equal and
opposite end moments. The differential equations used
to model the static elastic behavior of the curved
beam, derived by Vlasov’, are based on the
assumption that the cross-sectional shape is assumed to
be constant along the entire center and doubly
symmetric, and the shear center and centroid coincide.
The member has both ends either  simply supported
or clamped, or has clamped-simply supported ends.
Numerical result are compared with existing exact
solutions and numerical solutions by the finite element
method(FEM) where available.

2. Governing Differential Equations

The x and y axes shown in Fig. 1 are the principal
centroidal axes of the beam cross section; the x-axis is
in the horizontal plane of curvature, and the z-axis
coincides with the centroid. The horizontal radius of
curvature R is constant.

The differential equations governing a curved beam
subjected to in-plane constant bending moment A, can
be written as (Yang and Kuo”)
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Fig. 1. Coordinate system and cross—section of curved
beam
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where E is the modulus of elasticity, G is the shear
modulus, /; is the moment of inertia about the x-axis
(sce Fig. 1), C, is the warping constant, K7 is the
Saint-Venant torsion constant, M, is the applied
constant in-plane bending moment, 7 is the polar radius
of gyration defined as [(J, + L)Vd4)'>, 4 is the cross-
sectional area, v is the displacement of the shear center
in the y~direction, and ¢ is the angle of twist of the
curved beam cross-section.

Replacing z by Rg, one can rewrite Egs. (1) and
Q) as
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where each ('=ddX) prime denotes one
differentiation with respect to the dimensionless
distance coordinate X= #/0¢, in which #, is the
opening angle of the member, and ¢ is the angle
from left support to generic point.

The following boundary conditions are taken for
simply supported ends (Tan and Shore'”): (a) no out-
of-planc deflection; (b) no torsional rotation; (c) no
bending moment; and (d) no bimoment. The bending
moment and the bimoment of the member can written as
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For clamped ends, », ¢, dv/dz, and r equal zero

where 7 represents the warping as defined by Vlasov®.
It can be written as (Chaudhuri and Shore'”)

z(z)=—(—}?%+%) )

The boundary conditions for both ends simply
supported, both ends clamped, and for mixed
clamped-simply supported ends are, respectively

v=¢=v =¢ =0 at X=0and ] W)
v=¢=1v =¢ =0, at X=0and 1 ®
v=¢=v =¢"=0,at X=0

v=¢=v=¢"=0 at X=1 ©

3. Differential Quadrature Method

The differential quadrature method(DQM) was
introduced by Bellman and Casti”. By formulating the
quadrature rule for a derivative as an analogous
extension of quadrature for integrals in their
introductory paper, they proposed the differential
quadrature method as a new technique for the
numerical solution of initial value problems of ordinary
and partial differential equations. However, the method
is limited with increasing number of grid points and
boundary adjacent & points. The accuracy of the
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quadrature solutions is dictated by the choice of
sampling points and by the choice of adjacent §
points. It was applied for the first time to static
analysis of structural components by Jang et al.">. The
versatility of the DQM to engineering analysis in
general and (o structural analysis in particular is
becoming increasingly evident by the related
publications of recent years. Kang and Han" applied
the method to the analysis of a curved beam using
classical and shear deformable beam theories, and
Kang'! studied the vibration analysis of curved beams
using DQM. From a mathematical point of view, the
application of the differential quadrature method to a
partial differential equation can be expressed as
follows:

LAY, = ZW, Axpfori, j=1,2,...N (10)

where L denotes a differential operator, x; are the
discrete points considered in the domain, i are the row
vectors of the N values, f{x;) arc the function values at
these points, W, are the weighting coefficients
attached to these function values, and N denotes the
number of discrete points in the domain. This equation,
thus, can be expressed as the derivatives of a function
at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function f{x) is taken as

fl=x*" for k = 1,2,3,...,N Qan

If the differential operator L represents an n”
derivative, then

B Wt = Gk Dk 2k mx ™" for

i k= 12,...,N (12
This expression represents N sets of N linear

algebraic equations, giving a unique solution for the

weighting coefficients, Wy, since the coefficient matrix
is a Vandermonde matrix which always has an inverse.

191



¢z

4. Application

Here DQM s applied to the out-of-plane buckling
analysis of curved beams. The differential quadrature
approximations governing the beams subjected to an
applied in-plane  constant moment A, and the
boundary conditions are shown below.

Applying the DQM to Egs. (3) and (4) gives
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where B; and D, are the weighting coefficients for
the second and fourth-order derivatives, respectively,
along the dimensionless axis.

The boundary conditions for both ends simply
supported, given by Eq. (7), can be expressed in
differential quadrature form as

Vl = 0atX=0 (15)

=0atX=0 16)
ﬁ‘,Bz,V =0at X = 0+¢ (17)
,ﬁ‘\Bmw; =0atX =0+0 (18)
g“BW-mV; =0at X =1-6 (19)
g‘\Bw—m@; =0at X =1-06 (20
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Vy=0at X =1 @n
Oy = 0at X =1 (22)

where § denotes a small distance measured along
the dimensionless axis from the boundary ends. In
their work on the applications of DQM to the static
analysis of beams and plates, Jang et al.”” proposed
the so-called &-technique wherein adjacent to the
boundary points of the differential quadrature grid
points are chosen at a small distance (in dimensionless
value). This & approach is used to apply more than
one boundary conditions for clamped ends, given by
Eq. (8), can be expressed in differential quadrature
form as

V. =o0at X =0 @3)

=Q0at X =0 24
ﬁAZ,V = Qat X=0+4 ©5)
ﬁ\A?jrp, = 0at X=0+4 26)
B AV, = 0at X=1-5 @)
A wp®, = 0at X=1-0 28)
Vy=0at X =1 (29)
Oy =0at X =] 30)

where A; are the weighting coefficients for the
first-order derivative.

Similarly, the boundary conditions for one clamped
end and one simply supported end, given by Eq. (9),
can be expressed in differential quadrature form as

V1=OatX=0 (€20

=(0at X =0 32)
ﬁAZ,V — 0at X=0+6 33)
g\AZ,-a),. =Qat X=0+48 (34)
BBV = 0at X=1-0 (35)
B B0, = 0at X=1-3 (36)
Vy=0a X =1 &)
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Oy =0at X =1 (38)

Mixed boundaries can be easily accommodated by
combining these equations; simply change the weigh-
ting coefficients.

5. Numerical results and comparisons

The critical bending moments subjected to an
applied in-plane constant bending moment are
calculated by the differential quadrature method, and
are presented together with existing exact solutions.
The critical values are evaluated for the case of a
single-span, wide-flange beam with various end
conditions and opening angles.

The example considered here has a constant length
of 10.24m (403.32 in.) and a variety of opening angles
ranging from 10° and 90°. Cross-sectional properties of
the beam are : 4 = 92.9cm(14.4 in%), I = 11,360cm’
@73 in. %, I, = 3870cm® (93 in. ¥, C, = 555,900
em®(2,070 . %, Ky = 589cm*(1.141 in. %), and r =
12.81cm(5.042 in.). Values used for the elastic
modulus and shear modulus are E = 200.
GN/n(29,000 ksi) and G = 77.2 GN/Im* (11,200 si).

Table 1 presents the results of convergence studies
relative to the number of grid points N and the ¢
parameter with 6o and 30°. The data show that the
accuracy of the numerical solution increases with
increasing N. Then numerical instabilities arise if N
becomes too large(possible greater than approx. 19).
Table 1. Crtical moment Mer Of out-of-plane bucling of

curved beams with both ends simply supported for
a range of grid points N and &, 8o=30" and &°

M,o(kN-cm)
g, |Exact(Yang and| 4
0 Kuol) 1%x10° [ 1x107° | 1x10™ | 1 x10™
T | 4815 | -4864 | 4822 | -4822
- . 4820 | 4821 | -4821 | -4821

4321 | -4821 | 4821 | -4821
4821 | -4821 | 4821 | -4843
7| -1089 | -1096 | -1115 | -1099
9 | 1098 | -1098 | -1098 | -1117
%’ 109 1| -109 | -1098 | -1098 | -1098
13| -1103 | -1097 | -1098 | -1098

Note : 1 kip-in = 11.3 kKN-am
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Table 2. First four critical moments of out-of~plane buckiing of
curved beams with ends simply supported for a
range of grid points N and 8 =1x107";80=3°

and 90°
Mye(kN-cm)
Exact(Yang and DQM
0 | M« Kuo') 1 13 T
Myt 4821 4821 | <821 | 4823
M2 28246 28243 | -28246 | -28246
30° Myess -84052 83858 | -84061 | -84053
Myct -176449 | -185173 | -175522 | -176551
My -1098 1098 | -1098 | -1236
w | Me -9549 9548 | -0549 | -1237
My 34942 34860 | -34947 | 34950
Myt 89497 89281 | -88891 | -89564

Table 3. Gitical moment Me of out-ofplane buckiing of
curved beams with both ends simply supported ;
N=tt and & =1x10™"

B(degree) bollo0)
Exact(Yang and Kuo') DQM
10 -13114 -13114
30 4821 4821
50 -2709 -2709
70 -1706 -1709
90 -1098 -1098

Note : 1 kip-in = 11.3 kKN-cm

Table 1 also shows the sensitivity of the numerical
solution to the choice of . The optimal value for &
is found to be 1x10™ to 1x10™, which is obtained
from trial-and-error calculations. The solution accuracy
decreases due to numerical instabilities if & becomes
too big(possibly greater than approx. 1x10° for this
case). Table 2 presents the first four critical bending
moments, denote by M, through M, for the
number of grid points and 8=1x10"" with §=30°
and 90°. The data show that the accuracy of the
numerical solution increases with increasing N for the
lower mode critica] moments. The remainder of the
numerical results are computed with 11 discrete points
along the dimensionless X-axis and &=1x10",

In Table 3, the critical bending moments determined
by the differential quadrature method are compared
with the exact solution by Yang and Kuo" for the case
of simply supported ends. Table 4 shows the numerical
results by the DQM for the case of both ends clamped

and clamped-simply supported ends  without
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comparison since no data are available. From Tables 3
and 4, it is seen that the critical loads of the member
with clamped ends are much higher than those of the
member with simply supported ends and those of the
member with mixed clamped-simply supported ends. In
Table 5, the critical bending moments determined by
the DQM are compared with the solution by Yang and
kuo" for the case of simply supported ends neglecting
warping (C, = 0). It is observed that the critical loads
of the member with warping are much higher than
those of the member without warping, and thus
warping can have a significant effect on the critical
loads. The results by DQM also show that the case of
both ends simply supported is more affected by the
warping than any other boundary conditions, and as
the torsion constant of a beam cross-section becomes
smaller, the warping stiffness of the cross-section
becomes more significant. The critical loads can be
increased by decreasing the opening angle #¢. As can
be seen, the numerical results by the differential
quadrature method show good to excellent agreement
with the exact solutions.

Table 4. Critical moment M of out-of-plane buckling of
curved beams with both ends damped and
clamped-simply supported ends ; N=11 and & =1

X 1 0—11
Myo(kN-cm)
6 o(degree)) Both ends .
ICl. s ried ends

clamped (DQ) lamped-simply suppo (DQM)
10 69687 -33976
30 -75629 ~24603
50 67357 -17371
70 -55758 -12854
90 -46257 -9959

Note : 1 kip-in = 11.3 kN-cm

Table 5. Gritical moment Mycr of out-ofplane bucking of
curved beams with both ends simply supported

negecting warping ; N=11 and & = 1x107™"

) | g i oy |
10 -10924 -10924
30 -3933 3933
50 -2205 -2205
70 -1390 -1390
90 -893 -893

Note : 1 kip-in = 11.3 kN-cm
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6. Conclusions

The differential quadrature method was applied to
the computation of the eigenvalues of the equations
governing the out-of-plane buckling of curved beams
including a warping contribution. The present approach
gives excellent results for the cases treated while
requiring only a limited number of grid points: only
eleven discrete points were used for the evaluation.
New results are given for two sets of boundary
conditions not considered by previous investigators for
the out-of-plane buckling: clamped-clamped and
clamped-simply supported ends.
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