DOI QR코드

DOI QR Code

Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

  • Elmerabet, Abderrahmane Hadj (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique) ;
  • Tounsi, Abdelouahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique) ;
  • Semmah, Abdelwahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique)
  • Received : 2016.08.23
  • Accepted : 2016.10.19
  • Published : 2017.03.25

Abstract

In this paper, the critical buckling temperature of single-walled Boron Nitride nanotube (SWBNNT) is estimated using a new nonlocal first-order shear deformation beam theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of SWBNNT and is based on assumption that the inplane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Results indicate the importance of the small scale effects in the thermal buckling analysis of Boron Nitride nanotube.

Keywords

Acknowledgement

Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  4. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  5. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  6. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  7. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  8. Blase, X., Rubio, A., Louie, S.G. and Cohen, M.L. (1994), "Stability and band gap constancy of boron nitride nanotubes", Europhys. Lett., 28(5), 335-341. https://doi.org/10.1209/0295-5075/28/5/007
  9. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  10. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  11. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  12. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  13. Chen, C., Li, S., Dai, L. and Zhao, Q.C. (2014), "Buckling and stability analysis of a piezo-electric viscoelastic nano beam subjected to vander Waals forces", Commun. Nonlinear Sci. Numer. Simulat., 19(5), 1626-1637. https://doi.org/10.1016/j.cnsns.2013.09.017
  14. Chopra, N. and Zettl, A. (1998), "Measurement of the elastic modulus of a multi-wall boron nitride nanotube", Solid State Commun., 105(5), 297-300. https://doi.org/10.1016/S0038-1098(97)10125-9
  15. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A. (1995), "Boron-nitride nanotubes", Science, 269(5226), 966-972. https://doi.org/10.1126/science.269.5226.966
  16. Ciofani, G., Raffa, V., Menciassi, A. and Cuschieri, A. (2009), "Boron nitride nanotubes: An innovative tool for nanomedicine", Nano Today, 4(1), 8-10. https://doi.org/10.1016/j.nantod.2008.09.001
  17. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
  18. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  19. Genchi, G.G., Rocca, A., Grillone, A., Marino, A. and Ciofani, G. (2016), "Boron nitride nanotubes in nanomedicine: Historical and future perspectives", In: Boron Nitride Nanotubes in Nanomedicine, (Edited by G. Ciofani, V. Mattoli), Elsevier, UK, pp. 201-218.
  20. Ghassemi, H.M. and Yassar, R.S. (2010), "On the mechanical behavior of boron nitride nanotubes", Appl. Mech. Rev., 63(2), 020804. https://doi.org/10.1115/1.4001117
  21. Goldberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. and Zhi, C. (2010), "Boron nitride nanotubes and nanosheets", ACS Nano, 4(6), 2979-2993. https://doi.org/10.1021/nn1006495
  22. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  23. Heireche, H., Tounsi, A., Benzair, A. and Bedia, E.A.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  24. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19(18), 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  25. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  26. Jabbari, M., Farzaneh Joubaneh, E. and Mojahedin, A. (2014), "Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory", Int. J. Mech. Sci., 83, 57-64. https://doi.org/10.1016/j.ijmecsci.2014.03.024
  27. Jeon, G.S. and Mahan, G.D. (2009), "Lattice vibrations of a single-wall boron nitride nanotube", Phys. Rev. B, 79(8), 085424. https://doi.org/10.1103/PhysRevB.79.085424
  28. Kumar, S., Panchal, M.B., Kumar, A. and Upadhyay, S.H. (2014), "Continuum solid modeling based FEM simulation approach for single walled boron nitride nanotube based biosensing", Procedia Materials Science, 5, 2-10. https://doi.org/10.1016/j.mspro.2014.07.236
  29. Li, C. and Chou, T. (2006), "Static and dynamic properties of single-walled boron nitride nanotubes", J. Nanosci. Nanotechnol., 6(1), 54-60.
  30. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44, 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
  31. Moon, W. and Hwang, H. (2004), "Molecular mechanics of structural properties of boron nitride nanotubes", Physica E, 23(1-2), 26-30. https://doi.org/10.1016/j.physe.2003.11.273
  32. Nasihatgozar, M., Daghigh, V., Eskandari, M., Nikbin, K. and Simoneau, A. (2016), "Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes", Int. J. Mech. Sci., 107, 69-79. https://doi.org/10.1016/j.ijmecsci.2016.01.010
  33. Oberlin, A., Endo, M. and Koyama, T. (1976), "Filamentous growth of carbon through benzene decomposition", J. Crystal Growth, 32(3), 335-349. https://doi.org/10.1016/0022-0248(76)90115-9
  34. Oh, E.S. (2010), "Elastic properties of boron-nitride nanotubes through the continuum lattice approach", Mater. Lett., 64(7), 859-862. https://doi.org/10.1016/j.matlet.2010.01.041
  35. Panchal, M.B. and Upadhyay, S.H. (2013a), "Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms", Physica E, 50, 73-82. https://doi.org/10.1016/j.physe.2013.02.018
  36. Panchal, M.B. and Upadhyay, S.H. (2013b), "Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: Extended defector dislocation line", Sensors Actuators A, 203, 160-167. https://doi.org/10.1016/j.sna.2013.08.031
  37. Panchal, M.B. and Upadhyay, S.H. (2014), "Single walled boron nitride nanotube-based biosensor: an atomistic finite element modeling approach", IET Nanobiotechnol, 8(3), 149-156. https://doi.org/10.1049/iet-nbt.2013.0012
  38. Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2012), "Mass detection using single walled boron nitride nanotube as a nanomechanical resonator", NANO: Brief Reports and Reviews, 7(4), 1250029. https://doi.org/10.1142/S1793292012500294
  39. Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2013a), "Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: Single atom vacancies and divacancies", Sensors Actuators A, 197, 111-121. https://doi.org/10.1016/j.sna.2013.04.011
  40. Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2013b), "Vibration analysis of single walled boron nitride nanotube based nanoresonators", J. Nanotechnol. Eng. Med., Transact. ASME, 3(3), 031004. https://doi.org/10.1115/1.4007696
  41. Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2014), "Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation", Molecul. Simul., 40(13), 1035-1042. https://doi.org/10.1080/08927022.2013.837906
  42. Pokropivny, V., Kovrygin, S., Gubanov, V., Lohmus, R., Lohmus, A. and Vesi, U. (2008), "Ab-initio calculation of Raman spectra of single-walled BN nanotubes", Physica E, 40(7), 2339-2342. https://doi.org/10.1016/j.physe.2008.01.013
  43. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., Int. J., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031
  44. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  45. Rocca, A., Marino, A., del Turco, S., Cappello, V., Parlanti, P., Pellegrino, M., Golberg, D., Mattoli, V. and Ciofani, G. (2016), "Pectin-coated boron nitride nanotubes: In vitro cyto-/ immune-compatibility on RAW 264.7 macrophages", Biochimica et Biophysica Acta-General Subjects, 1860(4), 775-784. https://doi.org/10.1016/j.bbagen.2016.01.020
  46. Rubio, A., Corkill, J.L. and Cohen, M.L. (1994), "Theory of graphitic boron nitride nanotubes", Phys. Rev. B, 49(7), 5081-5088. https://doi.org/10.1103/PhysRevB.49.5081
  47. Santosh, M., Maiti, P.K. and Sood, A.K. (2009), "Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes", J. Nanosci. Nanotechnol., 9(9), 5425-5430. https://doi.org/10.1166/jnn.2009.1197
  48. Suryavanshi, A., Yu, M., Wen, J., Tang, C. and Bando, Y. (2004), "Elastic modulus and resonance behavior of boron nitride nanotubes", Appl. Phys. Lett., 84(14), 2527-2529. https://doi.org/10.1063/1.1691189
  49. Tounsi, A., Heireche, H. and Berrabah, H.M. (2009a), "Comment on [Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory]", J. Phys.-Condens. Matter., 21(44), 448001. https://doi.org/10.1088/0953-8984/21/44/448001
  50. Tounsi, A., Heireche, H. and Adda Bedia, E.A. (2009b), "Comment on "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory" [J. Appl. Phys. 103, 024302 2008]", J. Appl. Phys., 105(12), 126105. https://doi.org/10.1063/1.3153960
  51. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013a), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  52. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013b), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  53. Verma, V., Jindal, V.K. and Dharamvir, K. (2007), "Elastic moduli of a boron nitride nanotube", Nanotechnology, 18(43), 435711. https://doi.org/10.1088/0957-4484/18/43/435711
  54. Zhi, C., Bando, Y., Tang, C. and Golberg, D. (2005), "Immobilization of proteins on boron nitride nanotubes", J. Am. Chem. Soc., 127(49), 17144-17145. https://doi.org/10.1021/ja055989+
  55. Zhi, C.Y., Bando, Y., Tang, C.C., Huang, Q. and Golberg, D. (2008), "Boron nitride nanotubes: functionalization and composites", J. Mater. Chem., 18(33), 3900-3908. https://doi.org/10.1039/b804575e

Cited by

  1. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  2. Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.573
  3. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.269
  4. Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
  5. Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2017, https://doi.org/10.12989/aas.2020.7.2.169
  6. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  7. Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads vol.7, pp.2, 2020, https://doi.org/10.12989/smm.2020.7.2.085
  8. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2017, https://doi.org/10.12989/sem.2020.76.3.413
  9. Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory vol.49, pp.4, 2021, https://doi.org/10.1080/15397734.2019.1698437
  10. Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
  11. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
  12. A review of size-dependent continuum mechanics models for micro- and nano-structures vol.170, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108562