• Title/Summary/Keyword: crack evaluation

Search Result 1,262, Processing Time 0.023 seconds

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Aging Deterioration for Electric Power Transmission Tower on Offshore Through Periodic Inspections (해상송전철탑 구조물의 주기점검을 통한 경년열화 변화특성)

  • Lee, Ho Beom;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.25-33
    • /
    • 2012
  • In electric power transmission tower structures on offshore, implementation of life management using the event data of regular safety inspections for structural and material damages is strongly recommended. In this study, six tower structures in Sihwa Lake around Yeoungheung island were target bodies for the safety inspections. safety inspections for deterioration about each of six towers were performed about three items for steel member, five items for concrete foundation, and four items for steel-pipe pile in seawater and seawater itself. Safety inspections for steel members included the visual observations of surface appearances, the measurements of member thicknesses, and the checks of painting states. Also safety inspections for concrete foundations comprised the estimation of crack features, the evaluation of non-destructive compression strengths, and the measurements of neutralization depths and chlorides contents. For steel-pipe piles in seawater the inspections comprised the surveys of corrosion states in accordance with potential levels tests and anode tests, the analyses of photos taken on surfaces of the piles as well as the evaluation of seawater quality. A set of deterioration inspections was performed at the same positions around october of each year for three consecutive years. As a result in this study, Newly developed deterioration indexes have been applied profitably to maintain structural safety for electric power transmission towers by utilizing these event data systematically.

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

Evaluation on the Horizontal Shear Strength of Precast Concrete Slab with the Inverted-Rib-Plus (리브플러스 PC슬래브의 수평전단강도 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Yun Cheul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.156-165
    • /
    • 2011
  • This study investigates the horizontal shear behavior of an interface between precast concrete (PC) and topping concrete(RC), and evaluates the horizontal based on the investigations by the experimental. Horizontal shear strength in connected surface is determined by the roughness an interface and the shear reinforcement or not. In this study, the main experimental parameters are the shear reinforcement types in the shape of loop-type and lattice-type, rebar spacing. A total of four specimens were shear strength tested and manufactured. As a result, the horizontal shear strength of reinforced connected surface was found to be controlled by deformation in vertical direction. Comparison of reinforcement shape, the mean initial crack load loop type specimens, the average maximum load and the junction of the average in terms of initial stiffness, respectively 33.7%, 45.9% and 55.2% were large enough. Evaluation results for shear strength equation of existing standard domestic, the loop-type reinforced 2.32 to 4.23 times, lattice-type reinforced 1.65 to 3.06 times appears to be higher. Behavior of interface or strength of structural design criteria was fairly safe side. It does not have any problems in the applied field is considered.

Probabilistic Service Life Analysis of GGBFS Concrete Exposed to Carbonation Cold Joint and Loading Conditions (탄산화에 노출된 GGBFS 콘크리트의 콜드 조인트 및 하중 재하를 고려한 확률론적 내구수명 해석)

  • Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2020
  • Carbonation is a deterioration which degrades structural and material performance by permitting CO2 and corrosion of embedded steel. Service life evaluation through deterministic method is conventional, however the researches with probabilistic approach on service life considering loading and cold joint effect on carbonation have been performed very limitedly. In this study, probabilistic service life evaluation was carried out through MCS (Monte Carlo Simulation) which adopted random variables such as cover depth, CO2 diffusion coefficient, exterior CO2 concentration, and internal carbonatable materials. Probabilistic service life was derived by changing mean value and COV (Coefficient of variation) from 100 % to 300 % and 0.1 ~ 0.2, respectively. From the analysis, maximum reduction ratio (47.7%) and minimum reduction ratio (11.4%) of service life were obtained in cover depth and diffusion coefficient, respectively. In the loading conditions of 30~60% for compressive and tensile stress, GGBFS concrete was effective to reduce cold joint effect on carbonation. In the tensile condition, service life decreased linearly regardless of material types. Additionally service life rapidly decreased due to micro crack propagation in the all cases when 60% loading was considered in compressive condition.

Evaluation on Hydrogen Embrittlement of 5 Types of High Strength Dual Phase Steels by Small Punch Test (소형펀치시험에 의한 5종의 고강도 DP강 수소취성 평가)

  • Choi, Jong-Un;Han, Kyung-Gu;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.40-46
    • /
    • 2014
  • The hydrogen embrittlement degree of 5 type high strength DP steel charged with hydrogen by electrochemical method was evaluated by small punch test(SP test). After SP test, SP absorbed energy was remarkably decreased from 363 kgf-mm to 209 kgf-mm with increasing hydrogen charging time from 5hr to 50hr at DP5 specimen under the $200mA/cm^2$ current density condition. It was investigated that the decrease of hydrogen charging amount and SP absorbed energy according to the increase of current density and hydrogen charging time had a linear relationship. And it also investigated that the change of bulb height appeared by the SP test was decreased from 1.79mm to 1.59mm with the hydrogen charging conditions. It was supposed that it could be used as indicator of the evaluation of hydrogen embrittlement because of the similar trend of the formal results of SP absorbed energy. From the SEM observation of fracture area by crack in bulb, the morphology of fracture surface according to increasement of the hydrogen charging amount was varied with the cleavage mode.

Specimens and method for evaluating the moisturizing ability of lip makeup products (립메이크업 제품의 보습능 평가용 시편과 측정법)

  • Sung, Jee Eun;Jung, Jung Hui;Ryu, Hee-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.727-736
    • /
    • 2017
  • In this study, the method of evaluation of moisturizing ability of cosmetics using specimens was studied as an alternative method of clinical tests. Cosmetic spreadability, surface drying, and moisture loss rate of four specimens (Japanese cake (Maru mochi), Garaetteok, wheat flour, and agar) were evaluated. Also, the water loss rate of the specimens and the transepidermal waterloss were analyzed for 10 kinds of lip make-up products (5 kinds of lipstick, 3 kinds of lip balm, 2 kinds of lip gloss). The moisture loss rate (moisture evaporation sensitivity) of the agar specimen was highest in the order of agar> Garaetteok> Japanese cake> wheat flour. Agar specimens are the most suitable in terms of spreadability, surface crack, and raw material supply. Containers for the preparation of agar specimens are suitable for plastic materials with low heat transfer, which can produce convex, smooth surface specimens. In the evaluation of moisturizing ability of lip makeup products, there was a strong correlation between the water loss rate and the transepidermal waterloss rate measured with agar specimens. These results show that the proposed method can be used as one of the useful alternative test methods.

Applicability of Composite Polyurea Method Considering the Required Performance in Underground Parking Lot Upper Slab (공동주택 지하주차장 상부슬래브의 요구성능을 고려한 복합형 폴리우레아 공법의 적용성 검토)

  • Lee, Jung-Hun;Choi, Eun-Kyu;Song, Je-Young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • In this study, problems of the waterproofing methods in which water leakage occurs in the upper slab of the underground parking lot of apartment houses and the requirements considering the characteristics of the upper slab, and selected the appropriate performance(proposal) for the composite polyurea process are reviewed. As a result of the study, it is necessary to review performance such as responsiveness to upper slab of the multi-unit underground parking lot that is comprised of (1) crack and behavior responsiveness, (2) surface integrity, (3) vertical watertight stability, (4) pressure layer construction, (5) impact and pressure response and (6) vehicle moving load. As a result of evaluating 5 items corresponding to the requirements for the soft and hard complex polyurea, all of them were found to meet the conditions, and each materials were improved by compounding the materials that had problems when applying a single-ply method, thereby clarifying the advantages and disadvantages of the material property. However, in order to apply to the actual site, additional evaluation on site applicability such as mock-up evaluation should be conducted, and subsequent studies on the applicability of the market through review of economic feasibility and maintenance is required.

Self-healing Performance Evaluation of Cement Mortar with Inorganic Additives Based on Clinker Binder (클링커 바인더 기반 무기계 혼합재를 활용한 시멘트 모르타르의 치유성능 평가)

  • Jung-Il, Suh;Yoon-Suk, Choi;Byung-Sun, Park;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.561-568
    • /
    • 2022
  • In this study, the mechanical properties and self-healing performance of cement mortar containing clinker binder, calcium sulfoaluminate(CSA), and sodium sulfate(Na2SO4) were evaluated. The mechanical properties of cement mortar were investigated by measuring compressive strength and flexural strength, and the healing performance was evaluated through hydrostatic water permeability test and gas diffusion test. In addition, the healing products precipitated in the cracks were visually observed through an optical microscope and a scanning electron microscope(SEM). As a result, the incorporation of the clinker binder-based inorganic additives improved the initial and 28-day strength by about 20 %. Depending on the healing performance evaluation method, there was a difference in the healing rate, and the healing rate showed a tendency to be underestimated. Nevertheless, CaCO3 was precipitated as the main healing product inside the 0.3 mm crack when the inorganic additives were mixed with cement mortar, improving the self-healing performance.