• 제목/요약/키워드: crack evaluation

검색결과 1,262건 처리시간 0.024초

원전 배관의 결함 평가를 위한 해석 (Analysis for Defect Evaluation of Pipes in Nuclear Power Plant)

  • 이준성
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3121-3126
    • /
    • 2013
  • 원전 배관의 건전성평가는 원자로 안전을 위해 중요하며 결함발견 시 반드시 건전성을 확보해야만 한다. 균열을 갖는 구조물에 대한 정확한 응력확대계수 해석과 균열성장속도는 파괴강도와 피로수명을 평가하는데 필요로 한다. 피로설계와 수명평가는 배관, 산업공장장비 등과 같은 구조물을 설계하는데 극히 중요하다. 응력확대계수를 이용한 균열간의 상호 간섭해석은 유한요소법으로 구하였다. 내압을 받는 원통형구조물의 경우 표면균열의 인접점에서 간섭이 가장 크게 일어남을 확인하였다. 또한, 반복하중 균열에 대해서는 균열 성장평가와 더불어 피로하중에 의한 균열진전을 예측하기 위한 피로해석을 수행하였다.

위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가 (Defect evaluations of weld zone in rails considering phase space-frequency demain)

  • 윤인식;권성태;장영권;정우현;이찬석
    • 한국철도학회논문집
    • /
    • 제2권2호
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

가압열충격에 대한 원자로용기의 구조건전성 평가프로그램의 개발 (Development of structural integrity evaluation program for reactor vessel under pressurized thermal shock)

  • 정명조
    • 전산구조공학
    • /
    • 제9권2호
    • /
    • pp.153-161
    • /
    • 1996
  • 본 논문에서는 가압열충격의 파괴역학적 해석에 필요한 이론을 조사하였고 원자로용기의 구조건전성을 평가하기 위하여 해석과정을 전산화하였다. 우선 사고 transient에 대하여 원자로용기내의 압력과 주입되는 냉각재의 온도변화가 주어지면 이들로 부터 시간에 따른 용기에서의 온도와 응력분포를 구하고, 중성자 조사량과 용기 재질의 화학성분으로 부터 기준무연성천이온도의 분포가 구해지며 이로부터 파괴인성치 K/sub IA/와 K/sub IC/의 분포가 얻어진다. 또한 응력분포로 부터 균열의 크기 및 형상에 따라 응력확대계수 K/sub I/이 구해지므로 이를 K/sub IA/및 K/sub IC/와 비교함으로써 균열의 성장거동을 예측할 수 있다. 지금까지 보고된 가압열충격을 유발할 수 있는 대표적인 사고 transient가 국내 발전소에 발생할 경우를 가정하여 해석을 수행하였고 그 결과에 대하여 검토하였다.

  • PDF

소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구 (A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance)

  • 최준성
    • 한국도로학회논문집
    • /
    • 제16권1호
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

용접부 건전성 평가를 위한 카오럴 후처리 시스템의 구축 (Construction of Chaoral Post-Process System for Integrity Evaluation of Weld Zone)

  • 이원;윤인식
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.152-165
    • /
    • 1998
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the chaoral post-process system for precision rate enhancement of ultrasonic pattern recognition. Chaos features extracted from time series data for analysis quantitatively weld defects For this purpose, feature extraction objectives in this study are fractal dimension, Lyapunov exponent, shape of strange attrator. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaoticity resulting from distance shifts such as nearby 0.5, 1.0 skip distance. Such difference in chaoticity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos fenture extraction, feature values of 0.835 and 0.823 in the case of slag inclusion and 0.609 and 0.573 in the case of crack were suggested on the basis of fractal dimension and Lyapunov exponent. Proposed chaoral post-process system in this study can enhances precision rate of ultrasonic pattern recognition results from defect signals of weld zone, such as slag inclusion and crack.

  • PDF

취성재료의 손상후 잔류강도 평가 (Evaluation of Residual Strength in Damaged Brittle Materials)

  • 신형섭;오상엽;서창민
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

SBR Latex를 이용한 흙 포장의 재료특성 연구 (Study on the Effect of SBR Latex on the Properties of Soil Pavement)

  • 이상염;황성도;양성린
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.73-82
    • /
    • 2014
  • PURPOSES : The purpose of this study is to determine the optimum addition rate of SBR latex through the evaluation of durability and strength of SBR latex applied soil pavement. Formerly used materials such as fly ash and cement in soil pavement had resulted in decreased durability due to micro crack by heat of hydration and shrinkage crack in winter. However, that agglutinated polymers help adhesion to aggregate increased comes up with preventing the crack opening when the number of capillary tubes of SBR latex get decreased in the hydration process of cement. Therefore, in this study, it is suggested that the evaluation of the field applicability of soil pavement be conducted through the performance lab test in terms of strength increment, adhesion improvement, and crack resistance based on SBR latex addition rate. METHODS : In order to evaluate the field applicability of soil pavement, SBR latex was added 0 to 3% by 1% increment, with fixed cement contents of 3% and 5%. The resistance of shear failure and crack of soil pavement were evaluated by performing the uniaxial compressive strength test and indirect tensile strength test at -20 and $20^{\circ}C$, respectively. RESULTSCONCLUSIONS : It was found out that from both tests, resistance of shear failure and crack were improved with increment of curing time, and especially more than 2% of SBR latex addition rate and 5% cement content gave better results.

원심성형 콘크리트의 투수시험을 통한 균열 자기치유 성능평가 (Evaluation of Crack Self-healing Performance in Centrifugal Molding Concrete by Permeability Test)

  • 황철성;우해식;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.84-89
    • /
    • 2018
  • 최근 자기치유 재료에 대한 연구는 보수하기 힘들거나, 보수비용이 많이 소요되는 구조물에 대해 구조물 스스로 손상을 치유하여 사용수명을 증가시키기 위해 많이 수행되어오고 있다. 현재 널리 사용되고 있는 자기치유 평가 방법으로는 투수시험이 있다. 하지만, 자기치유 평가 방법에서 자기치유 성능은 콘크리트의 초기 균열 폭에 큰 영향을 받지만 일관된 기준을 가지고 있지 않은 실정이다. 따라서, 본 연구에서는 기존 연구에서 사용한 균열 폭과 투수량을 기반으로 균열 폭-투수량의 상관관계와 시간-투수량의 상관관계를 분석하였다. 또한, 광학현미경을 이용하여 측정한 초기 균열 폭은 신뢰성이 떨어지므로 Poiseuille flow에서 ${\alpha}$값을 도출하여 시간-균열 폭에 대한 상관관계를 분석하여 시간-투수량과 시간-균열 폭에 대한 경향을 분석하였다.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

3차 등매개 유한요소를 이용한 이종재료 접합면에 수직인 균열의 응력확대계수 평가 (Evaluation of stress intensity factor for a crack normal to bimaterial interface using cubic isoparametric finite elements)

  • 임원균;정규철;송치훈
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.206-214
    • /
    • 1998
  • When a crack meets bimaterial interface stress singularity depends on the elastic constants of the adjacent materials. In the present study we are going to describe the finite element formulation for problems with a crack to be embedded in the stiffer material$({\mu}_2/{\mu}_1)$. The cubic isoparametric singular element, represented by adequately shifting the mid-side nodes adjacent to the crack tip is constructed to enclose the crack tip. An alternative method to obtain the optimal position of the mid-side nodes of cubic isoparametric elements is presented. In addition, a proper definition for the stress intensity factors of a crack normal to bimaterial interface is provided. It is based upon near a tip displacement solutions. Models for numerical analysis are two dimensional elastic bodies with a through crack under plain strain. The results obtained are compared with the previous solutions.