• 제목/요약/키워드: covariance-correlation matrix

검색결과 70건 처리시간 0.025초

Correlation among Ownership of Home Appliances Using Multivariate Probit Model (다변량 프로빗 모형을 이용한 가전제품 구매의 상관관계 분석)

  • Kim, Chang-Seob;Shin, Jung-Woo;Lee, Mi-Suk;Lee, Jong-Su
    • Journal of Global Scholars of Marketing Science
    • /
    • 제19권2호
    • /
    • pp.17-26
    • /
    • 2009
  • As the lifestyle of consumers changes and the need for various products increases, new products are being developed in the market. Each household owns various home appliances which are purchased through the choice of a decision maker. These appliances include not only large-sized products such as TV, refrigerator, and washing machine, but also small-sized products such as microwave oven and air cleaner. There exists latent correlation among possession of home appliances, even though they are purchased independently. The purpose of this research is to analyze the effect of demographic factors on the purchase and possession of each home appliances, and to derive some relationships among various appliances. To achieve this purpose, the present status on the possession of each home appliances are investigated through consumer survey data on the electric and energy product. And a multivariate probit(MVP) model is applied for the empirical analysis. From the estimation results, some appliances show a substitutive or complementary pattern as expected, while others which look apparently unrelated have correlation by co-incidence. This research has several advantages compared to previous literatures on home appliances. First, this research focuses on the various products which are purchased by each household, while previous researches such as Matsukawa and Ito(1998) and Yoon(2007) focus just on a particular product. Second, the methodology of this research can consider a choice process of each product and correlation among products simultaneously. Lastly, this research can analyze not only a substitutive or complementary relationship in the same category, but also the correlation among products in the different categories. As the data on the possession of home appliances in each household has a characteristic of multiple choice, not a single choice, a MVP model are used for the empirical analysis. A MVP model is derived from a random utility model, and has an advantage compared to a multinomial logit model in that correlation among error terms can be derive(Manchanda et al., 1999; Edwards and Allenby, 2003). It is assumed that the error term has a normal distribution with zero mean and variance-covariance matrix ${\Omega}$. Hence, the sign and value of correlation coefficients means the relationship between two alternatives(Manchanda et al., 1999). This research uses the data of 'TEMEP Household ICT/Energy Survey (THIES) 2008' which is conducted by Technology Management, Economics and Policy Program in Seoul National University. The empirical analysis of this research is accomplished in two steps. First, a MVP model with demographic variables is estimated to analyze the effect of the characteristics of household on the purchase of each home appliances. In this research, some variables such as education level, region, size of family, average income, type of house are considered. Second, a MVP model excluding demographic variables is estimated to analyze the correlation among each home appliances. According to the estimation results of variance-covariance matrix, each households tend to own some appliances such as washing machine-refrigerator-cleaner-microwave oven, and air conditioner-dish washer-washing machine and so on. On the other hand, several products such as analog braun tube TV-digital braun tube TV and desktop PC-portable PC show a substitutive pattern. Lastly, the correlation map of home appliances are derived using multi-dimensional scaling(MDS) method based on the result of variance-covariance matrix. This research can provide significant implications for the firm's marketing strategies such as bundling, pricing, display and so on. In addition, this research can provide significant information for the development of convergence products and related technologies. A convergence product can decrease its market uncertainty, if two products which consumers tend to purchase together are integrated into it. The results of this research are more meaningful because it is based on the possession status of each household through the survey data.

  • PDF

Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model

  • Chaeyoung, Lee;Jae Keun, Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.721-733
    • /
    • 2022
  • In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.

Time series analysis for the amount of medicine from the Korea Consumer Agency (한국 소비자원 의료분야 처리금액에 대한 시계열 분석)

  • Hee Song Kang;Sukhui Kwon;SungDuck Lee
    • The Korean Journal of Applied Statistics
    • /
    • 제36권1호
    • /
    • pp.21-32
    • /
    • 2023
  • The amount of money processed in medicine from the Korea Consumer Agency was studied by the various time series models. The medical data set from the Korea Consumer Agency were consisted of counseling, damage relief and conciliation. For the analysis of time series, autoregressive moving average model, vector autoregressive model and the transfer function model were used. We considered the stationarity and cross correlation function for the identification and fitting. As a result, the transfer function model showed a better prediction. Whereas, the vector autoregressive model also provided good information for the degree and duration of the influence of variables.

Spatially Adaptive High-Resolution Denoising Based on Nonstationary Correlation Assumption (비정적 상관관계를 고려한 공간적응적 잡음제거 알고리즘)

  • 김창원;박성철;강문기
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1711-1714
    • /
    • 2003
  • The noise in an image degrades image quality and deteriorates coding efficiency of compression. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other In order not to increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean square error filter. The justification for the proposed image model is presented and the effectiveness of the proposed algorithm is demonstrated experimentally.

  • PDF

A Study on Desired Signal Estimation in Correlation Signal of Array Antennas (배열 안테나의 상관성 신호에서 원하는 신호 추정 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제8권4호
    • /
    • pp.275-280
    • /
    • 2015
  • In this paper, we studied for modified MUSIC algorithm of direction of arrival (DOA)estimation. Modified MUSIC algorithm search optimal covariance matrix using singular value decomposition and Bayes method, and desired signals are estimated by updating weight. In order to estimation of desired signals, we used sub spatial method of MUSIC algorithm. General MUSIC algorithm can estimate a desired signal in case of non-correlation signal. But, general MUSIC algorithm in case of correlation signal can not estimate a desired signals and resolution is decreased. Though simulation in case of correlation signal, we analyze to compare proposed MUSIC algorithm with general MUSIC algorithm.

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • 제8권3호
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

A statistical analysis of the fat mass repeated measures data using mixed model (혼합모형을 이용한 체지방 반복측정자료에 대한 통계적 분석)

  • Jo, Jinnam;Chang, Un Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.303-310
    • /
    • 2013
  • Forty two female students whose fat mass ratio was over 30% were participated in the experiment of fat mass loss of two treatments for 8 weeks. They kept diary for foods they ate every day, took a picture of the foods, transmitted the picture to the experimenter by the camera phone. Among those, 28 students took the picture by regular camera phone (Treatment A), and the other students used smart phone (Treatment B). Fat mass weight and its related variables had been measured repeatedly four times at an interval of two weeks during 8 weeks. It was shown from mixed model analysis of repeated measurements data that AR(1) covariance matrix was selected as the optimal covariance matrix pattern. The correlation between two successive times is highly correlated as 0.838. Based upon the AR(1) covariance matrix structure, the students using smart phones were somewhat more effective in losing fat mass weight than the students using regular camera phones. The time effect was highly significant, but the treatment-time interaction effect was insignificant. The baseline effect and total cholesterol were found to be significant, but the calories with taking foods were somewhat significant, but the waist to hip ratio was found to be insignificant.

Applicability Evaluation of a Mixed Model for the Analysis of Repeated Inventory Data : A Case Study on Quercus variabilis Stands in Gangwon Region (반복측정자료 분석을 위한 혼합모형의 적용성 검토: 강원지역 굴참나무 임분을 대상으로)

  • Pyo, Jungkee;Lee, Sangtae;Seo, Kyungwon;Lee, Kyungjae
    • Journal of Korean Society of Forest Science
    • /
    • 제104권1호
    • /
    • pp.111-116
    • /
    • 2015
  • The purpose of this study was to evaluate mixed model of dbh-height relation containing random effect. Data were obtained from a survey site for Quercus variabilis in Gangwon region and remeasured the same site after three years. The mixed model were used to fixed effect in the dbh-height relation for Quercus variabilis, with random effect representing correlation of survey period were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -0.0291, 0.1007, respectively. The model with random effect (AIC = -215.5) has low AIC value, comparison with model with fixed effect (AIC = -154.4). It is for this reason that random effect associated with categorical data is used in the data fitting process, the model can be calibrated to fit repeated site by obtaining measurements. Therefore, the results of this study could be useful method for developing model using repeated measurement.

Shrinkage Model Selection for Portfolio Optimization on Vietnam Stock Market

  • NGUYEN, Nhat;NGUYEN, Trung;TRAN, Tuan;MAI, An
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권9호
    • /
    • pp.135-145
    • /
    • 2020
  • This paper provides the practical application of a linear shrinkage framework on Vietnam stock market. The cumulative data points observed in this analysis are 468 weeks from January 2011 to December 2019. All the companies listed on Ho Chi Minh City Stock Exchange (HOSE), except the companies under two years period from Initial Public Offering (IPO), are considered. The cumulative number of stocks picked is therefore 350 companies. The VNINDEX, which is the Vietnam Stock Index, is used as a reference index for shrinking to a single-index model. The empirical results show that the shrinkage of covariance matrix for portfolio optimization gives the promising results for the investors on Vietnam stock market. The shrinkage method helps the investors to produce the optimal portfolio in the sense of having higher profit with lower levels of risk compared to the portfolio of the traditional SCM method. Moreover, the portfolio turnover of shrinkage method is always kept at low magnitudes, and this makes the shrinkage portfolios save much transaction costs and reduce the liquidity risks in the trading process. In addition, the ability of shrinkage method in making profit is once again confirmed by the Alpha coefficient that achieves a high positive value.

ECG based Personal Authentication using Principal Component Analysis (주성분 분석기법을 이용한 심전도 기반 개인인증)

  • Cho, Ju-Hee;Cho, Byeong-Jun;Lee, Dae-Jong;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제66권4호
    • /
    • pp.258-262
    • /
    • 2017
  • The PCA(Principal Component Analysis) algorithm is widely used as a technique of expressing the eigenvectors of the covariance matrix that best represents the characteristics of the data and reducing the high dimensional vector to a low dimensional vector. In this paper, we have developed a personal authentication method based on ECG using principal component analysis. The proposed method showed excellent recognition performance of 98.2 [%] when it was experimented using electrocardiogram data obtained at weekly intervals. Therefore, it can be seen that it is useful for personal authentication by reducing the dimension without changing the information on the variability and the correlation set variable existing in the electrocardiogram data by using the principal component analysis technique.