Communications for Statistical Applications and Methods
/
v.19
no.5
/
pp.721-729
/
2012
Various methods control the influence of a covariate on a response variable. These methods are analysis of covariance(ANCOVA), RANK ANCOVA, ANOVA of (covariate-adjusted) residuals, and Kruskal-Wallis tests on residuals. Covariate-adjusted residuals are obtained from the overall regression line fit to the entire data set that ignore the treatment levels or factors. It is demonstrated that the methods on covariate-adjusted residuals are only appropriate when the regression lines are parallel and covariate means are equal for all treatments. In this paper, we proposed the new nonparametric method on the ANCOVA model, as applying joint placement in a one-way layout on residuals as described in Chung and Kim (2007). A Monte Carlo simulation study is adapted to compare the power of the proposed procedure with those of the previous procedure.
Repeated outcomes from the same subjects are referred to as longitudinal data. Analysis of the data requires different methods unlike cross-sectional data analysis. It is important to model the covariance matrix because the correlation between the repeated outcomes must be considered when estimating the effects of covariates on the mean response. However, the modeling of the covariance matrix is tricky because there are many parameters to be estimated, and the estimated covariance matrix should be positive definite. In this paper, we consider analysis of multivariate longitudinal data via two modeling methodologies for the covariance matrix for multivariate longitudinal data. Both methods describe serial correlations of multivariate longitudinal outcomes using a modified Cholesky decomposition. However, the two methods consider different decompositions to explain the correlation between simultaneous responses. The first method uses enhanced linear covariance models so that the covariance matrix satisfies a positive definiteness condition; in addition, and principal component analysis and maximization-minimization algorithm (MM algorithm) were used to estimate model parameters. The second method considers variance-correlation decomposition and hypersphere decomposition to model covariance matrix. Simulations are used to compare the performance of the two methodologies.
We consider the problem of detecting special variations in multivariate $T^2$-control chart when two or more multivariate outliers are present. Since a multivariate outlier may reflect slippage in mean, variance, or correlation, it can distort the sample mean vector and sample covariance matrix. Damaged sample mean vector and sample covariance matrix have difficulty in examining special variations clearly, An alternative to detection outliers or special variations is to use robust estimators of mean vector and covariance matrix that are less sensitive to extreme observations than are the standard estimators $\bar{x}$ and $\textbf{S}$. We applied popular minimum volume ellipsoid(MVE) and minimum covariance determinant(MCD) method to estimate mean vector and covariance matrix and compared its results with standard $T^2$-control chart using simulated multivariate data with outliers. We found that the modified $T^2$-control chart based on the above robust methods were more effective in detecting special variations clearly than the standard $T^2$-control chart.
Communications for Statistical Applications and Methods
/
v.6
no.3
/
pp.929-938
/
1999
We propose a criterion for testing homogeneity of diagonal covariance matrices of K multivariate normal populations. It is based on a factorization of usual likelihood ratio intended to propose and develop a criterion that makes use of properties of structures of the diagonal convariance matrices. The criterion then leads to a simple test as well as to an accurate asymptotic distribution of the test statistic via general result by Box (1949).
We compared equilibrium evaporation($E_{equili}$) eddy-covariance($E_{eddy}$) with soil moisture data($E_{SMseries}$) which were measured with a 2 hours sampling interval at three points for a humid forest hillslope from May 5th to May 31th in 2009. Accumulations of $E_{eddy}$, $E_{equili}$ for the study period were estimated as 2.52, 3.28 mm and those of $E_{SMseries}$ were ranged from 1.91 to 2.88 mm. It suggested that the eddy-covariance method considering the spatial heterogeneity of soil evaporation is useful to evaluate the soil evaporation. Method A, B and C were proposed using mean meterological data and daily moisture variation and the computations were compared to eddy-covariance method and equilibrium evaporation. The methods using soil moisture data can describe the variations of soil evaporation from eddy-covariance through simple moving average analysis. Method B showed a good matched with eddy-covariance method. This indicated that Dry Surface Layer (DSL) at 14:00 which was used for method B is important variable for the evaluation of soil evaporation. The total equilibrium evaporation was not significantly different to those of the others. However, equilibrium evaporation showed a problem in estimating soil evaporation because the temporal tendency of $E_{equili}$ was not related with the those of the other methods. The improved understanding of the soil evaporation presented in this study will contribute to the understandings of water cycles in a forest hillslope.
Communications for Statistical Applications and Methods
/
v.14
no.2
/
pp.301-307
/
2007
A effective teaching method on correlation coefficient for elementary level statistics course is discussed in this article. The well known inequalities, such as Theorem 368 of Hardy et al. (1952), are used for the interpretation of concept of covariance. An Excel example is provided for the illustration of concept of correlation coefficient.
Communications for Statistical Applications and Methods
/
v.7
no.3
/
pp.959-966
/
2000
A dimensionality assessment procedure DETECT uses the property of being near zero of conditional covariances as an indication of unidimensionality .This study provides the convergent properties to zero of conditional covariances when the dta is unidimensional, with which DETECT extends its theoretical grounds.
Communications for Statistical Applications and Methods
/
v.7
no.1
/
pp.285-290
/
2000
We noted a property of a stationary distribution on the matrix C, which is the covariance matrix of order statistics of standard normal distribution That is the sup norm of th powers of C is ee' divided by its dimension. The matrix C can be taken as a transition probability matrix in an acyclic Markov chain.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.3
/
pp.437-447
/
2003
We propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used fur spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR Inter and for the case of the IIR filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).
Data from repeated measurements are accomplished through repeatedly processing the same subject under different conditions and different points of view. The power of testing enhances the choice of pertinent analysis methods that agrees with the characteristics of data concerned and the situation involved. Along with the clinical example, this paper compares the analysis of the variance on ex-post tests, gain score analysis, analysis by mixed design and analysis of covariance employable for repeating measure. Comparing the analysis of variance on ex post test, and gain score analysis on correlations, leads to the fact that the latter enhances the power of the test and diminishes the variance of error terms. The concluded probability, identified that the gain score analysis and the mixed design on interaction between "between subjects factor" and "within subjects factor", are identical. The analysis of covariance, demonstrated better power of the test and smaller error terms than the gain score analysis. Research on four analysis method found that the analysis of covariance is the most appropriate in clinical data than two repeated test with high correlation and ex ante affects ex post.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.