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A Note on the Covariance Matrix of Order Statistics
of Standard Normal Observations

Hak-myung Leel)

Abstract
We noted a property of a stationary distribution on the matrix C, Whic/ is the
covariance matrix of order statistics of standard normal distribution. That ig the sup
norm of the powers of C is ee’ divided by its dimension. The matri¥ C can be

taken as a transition probability matnx in an acyclic Markov chain.

1. Introduction

The covariance structure of symmetrically dependent ordered observations has been
developed by Olkin and Viana (1995) and Viana and Olkin (1997) for visual acuity studies. For

example, if Y is permutation-symmetric p-variate normal with a common variance ¢ and a

common correlation 7, then the covariance matrix of order statistics Y is

Cov(¥)=d[7 ee’+(1—7Cl,
where e= (1, ...,1) has p components and C is the covariance matrix of the order statistics
of p independent standard normal random variables. In this paper, we note that the matrix
C has a property of a stationary distribution.
Suppose that the components of U'= (U, ...,Up) are independent and identically

distributed, and let U be the order statistics associated with U. Then, the moments,

covariances, and variances of order statistics can be obtained from

U] = =i J @ @] 1 -F@]* 'y,

E[U (i)U (i)] = G—=D!G _?1_ l)l(p—j)! fu il jf(u i)f(u j)

[Flu)] " M1~-Fu)I® [Flu)—Fu)] 7 ldudu;,

where F indicates the distribution of U and { is its density function. Thus we have the
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covariance matrix Cov ( U) of order statistics. However, numerical integration is generally

needed. When the density function is symmetric about zero, both computation and tabulation
are reduced by the fact that (e.g., David, 1981)

E(U ) = —EU i) (1)

cov (U ,U () = ¢cov(U prip, U pos+1)- (2)

The theory of order statistics of iid variables is well-known. An extensive reference is David

(1981).

In the normal N(0, 1), the mean vector ¢ and the covariance matrix C of order statistics
are given, for example, in Beyer (1991). The symmetry results (1) and (2) hold, and in David

(1981) we have e’c = 0 and C is a stochastic matrix, that is Ce = e (the sum of the
elements of each row is 1), where e = (1,...,1) . For example,
for p = 2,

¢’ = [—0.56419, 0.56419],

Co — [0.68169 0.31831
2 0.68169]

for p = 3,
¢’ = [ —0.84628 0.00000 0.84628],

0.55947 0.27566 0.16487
Cy = [ 0.44867 0.27566].
0.55947

Note that since the matrix € is symmetric and stochastic, it is automatically doubly
stochastic, that is e'C= e’. Some simple results of multiplications of C and a permutation

symmetric matrix having the form of 2, = bee’ +(a—b) I are discussed in Section 2 and

some characteristics on C are also noted. In Section 3, we show that the matrix C has a
property of a stationary distribution and it can be a transition probability matrix in a
stochastic process.

Now, we conclude the section with that the ’'doubly stochastic’ in Cov ( ) characterizes
the normal distribution. The following result is due to Govindarajulu (1966).

Proposition 1 (Govindarajulu, 1966) Let U, ..., U, be 1id random variables with zero means

and variance ¢2. Then Cov (1) is doubly stochastic for all p if and only if the distribution

of U is normal
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2. Some Characteristics on C

Let U = [Uy,..,U,] be distributed with N(0Q, I). Then, the matrix C = Cov ()
has positive entries. To prove, it is sufficient to show that for arbitrary U ), U (g, r s,
without loss of generality, cov(U (), U (5)>0. It follows from Tukey (1958) that the
distribution of U,y given U(y shows complete positive regression on Uyy; that is, for

—oodu’<u” (oo,

W) __ow
®(U ) — o)

Pr[U o=ulU g=u"]=Pr[ U (=u"]

> Pr[Bﬁ—q)%)*]= PrlUpn=<u | Uyg=u"

where B is a beta distribution B(a=r, A/=s—r), and ®(-) is a standard normal
cumulative function. Therefore, cov(U ¢, U () > 0. Kim and David (1990)'s idea can be

also applied to show positive entries of C. They studied on stochastic behavior of differences
of order statistics and inequalities for covariances of order statistics. With Kim and David

(1990), for fixedr < p, 1) for r £ s cov(U (y,U (y) is monotone decreasing as s is
monotone increasing, 2) as a similar results, for s < r, cov(U y,U () is monotone
decreasing as s 1s monotone decreasing.

With U ~ N(O0, I), then the matrix C= Cov(U) is positive definite as well. It is

enough to show that for each nonzero x in R®? x"Cx">0.

x' Cx" = Z;C ing-l—zZ%Cinixi

= ﬁx?—Z%’C ij(Xi_Xj)2
= ZIX?(I-;C ij) >0,

where x; is the i-th element of x and Cj is the (i,i)-th cell element of C. It results

from that C is doubly symmetric and stochastic.

Therefore, it says that the matrix C is symmetric, stochastic and positive definite with
positive entries. With these characteristics, we may be able to significantly reduce the work
required in the multiplications or the inversion of a certain matrox and C. For example, with
a pXp matrix X =bee +(a—b) I, a*b and a*—(p—1)b, then since 2, and C are
nonsingular, we have
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- 1
(220 1e=?b(ﬁe.

Likewise, when a nonsingular matrix is permutation symmetric, we note the following
facts.
Result 1. Let >, be an pXp matrix in the form of >, =bee’+(a—b)I, where a+b

and a#+—(p—1)b. Then,

DENC-D = i C-D

10 -1 _ 1 o~
2 27N Cc-DX a2 D
3) (bee"+(a—b) O) ”le=?_*"_b(1p—_1)e
1

4) ((a=b)I+b C) le = — e, a=0, b=0.

It helps to get the covariance structures of order statistics and induced order statistics. For
details see Olkin and Viana (1995) and Lee and Viana (1999).
As an extension, the matrix bee’+(a—b) A, A & G, where G is the set of all

nonsingular pXp real doubly stochastic matrices, consists a class of pattermed matrices. The
study on this multiplicative class of patterned matrices is given in Viana (1996).

3. A Stationary Property
The following result is a property of a stationary distribution on the matrix C.

Proposition 2. If A is symmetric and stochastic with positive entries, then

A% = limAnz—lee'. 3

n—eo D

Proof. Since the maximal eigenvalue is always included between the largest and the
smallest row sums (e.g., Gantmacher 1959, p.83), and all the row sums are 1 in a stochastic
matrix, the matrix A has the maximal eigenvalue 1. Since A has positive entries, by
Perron’s theorem (see Gantmacher 1959, p.53), the module of all the other eigenvalues

A;,i=2,...,p, is strictly less than the maximal eigenvalue 1, so that



A Note on the Covariance Matrix of Order Statistics of Standard Normal Observations 239

1>[A4, 1=2,...,p. (4)

Since A is symmetric and stochastic, A and ee’ commute and hence are simultaneously

diagonalizable. Let P be an orthogonal matrix that diagonalizes A and ee’, so that

n ! A n
D = 2 = P"A P,
A3
1
lig D" = | "
0
= —11; P (e) P,
and therefore (using the sup norm)
A”=lim A"=lim PD"P'=-L PP (ee’ )PP =L ce’,

concluding the proof.

O

In the proof, the expression (4) can become 1> A;>0, 1 = 2,...,p for C since the matrix
C is positive definite. The matrix € and the matrix ip ee’ satisfy the conditions of

Proposition 2. However the identity matrix I does not, because its entries are non-negative
even though it is symmetric and stochastic. From the example, we know that

c., — [0.6817 0.3183
2 0.3183 0.6817

0.5595 0.2757 0.1648
[0.2757 0.4486 0.2757}
0.1648 0.2757 0.5595

ng

It then follows that

ot = [ 3841 1

0.33363 0.33333 0.33304 1 1
[0.33333 0.33333 0.33333 }23 {1 } .
0.33304 0.33333 0.33363 1

From the Proposition 2, the matrix C can be taken as a transition probability matrix in

Ci =

— = =
— = -
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an acyclic Markov chain. Starting with a state distnbution m,, after k steps the state
distribution m, is given by

= C* .
In the limit,

e’ I
€ gy =(——TN)e="1e,

p p

which is uniform. This holds for any initial state distribution .

The Proposition 2 is also a corresponding fact that every matrix with non—negative
entries can be represented as the limit of a sequence of irreducible matrices with positive

entries A, (Gantmacher 1959, p.66).
A = lin; A, (A,>0,n=1,2.).

For the matrix C, AZ%ee' and A = (C".
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