• Title/Summary/Keyword: coupling beam

Search Result 492, Processing Time 0.023 seconds

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

A Study on the Determination of the Principal Coordinate System of Composite Rotor Blade having Arbitrary Cross Section (임의 단면을 갖는 복합재료 회전익의 주축계 결정에 관한 연구)

  • Yu, Yong-Seok;Choe, Myeong-Jin;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.981-987
    • /
    • 1997
  • Modern helicopter rotor blades with non-homogeneous cross section composed of anisotropic material rquire highly sophisticated structural analysis. Variation in cross section geometry makes this task of analysis more complicated. Since rotor blades generally are much longer than their lateral dimensions, one-dimensional models seem feasible, at least from a computational point of view. Therefore determination of the principal coordinate system is very important to remove the structural coupling for one-dimensional beam modelling. In this study, shear center, and principal direction. The method will be verified by comparing the results with confirmed experimental results.

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

Analysis of Coupled Horizontal-Torsional Vibrations of Container Ships (콘테이너선의 수평-비틂연성진동 해석)

  • K.C.,Kim;S.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.1-10
    • /
    • 1986
  • A container ship, due to wide hatch openings, has characteristics of poor torsional rigidity, strong coupling of horizontal-torsional modes and significant discontinuity in the longitudinal variation of hull sections. In the mathematical formulation of the problem the hull is modeled as a beam and the transfer matrix method is utilized. The cross decks between cargo hatch opening are separated from the main hull and regarded as equivalent springs restraining torsion of hull. The effect of shear deformation of ship-side plating on torsion is taken into account in addition to St. Venant's and bending torsional rigidities. Compatibility requirements at cross section discontinuity are approximately considered. Developing the practical calculation procedure and the computer programs for application to an actual ship, some parametric studies on modeling methods of the cross deck, the compatibility condition, added-mass center etc. are out for the purpose of comparison.

  • PDF

Magnetostatic Coupling Between two Nanowires of Different Width

  • Lee, Han-Seok;Kim, Seung-Ho;Chang, Young-Wook;Yoo, Kyung-Hwa;Lee, J.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.15-17
    • /
    • 2009
  • The magnetostatic interaction between the two magnetic nanowires was studied by using the longitudinal magneto-optical Kerr effect (MOKE). For this purpose two magnetic nanowires having different widths (400 nm, 800 nm) were fabricated on an Si substrate with electron beam lithography and the lift-off method. Magnetic hysteresis loops measured by MOKE showed double switching behavior, corresponding to the separated switching fields of each wire. The switching field of the narrow wire was greatly affected by the separation between the two wires. Based on how the switching field changes with decreasing separation, it is concluded that the magnetostatic field of the 800-nm wire strongly affects the switching of the 400-nm wire when the separation is less than $0.5{\mu}m$.

A Review of Mode Synthesis Techniques and Its Application Between FE and Experimental Model (부분 구조 합성법의 고찰 및 유한 요소 모델과 실험 모델과의 합성에 관한 연구)

  • 최재웅;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.799-806
    • /
    • 1989
  • Component mode synthesis (CMS) method can be divided into free, fixed and hybrid interface method according to each component's connecting conditions. In this paper, major mode synthesis methods were reviewed and their accuracies were examined by comparing the calculated eigenvalues with those from full finite element (FE) model. Also, CMS is expanded into the coupling between finite element (FE) and experimental model. Since the assumed experimental data seldom have slope information, the slope information at the interface points is prepared by curve-fitting of the calculated values. A simple beam structure to show the effectiveness of the above method, and we found that it can improve the accuracy of the synthesis method in calculation, expecially in the low modes.

Design for Microstrip Array Antenna with EMC Dipole for Communication Satellite System (EMC 다이폴을 이용한 CS용 마이크로스트립 어레이 안테나의 설계)

  • 민경식;박세현;김동철;임학규;김상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.120-123
    • /
    • 1999
  • This paper presents the design method of EMC(Electromagnetic Coupling) microstrip array antenna for CS(Communication Satellite) system. Microstrip dipole antennas are attractive elements owing to the desirable properties such as simplicity, small size and linear polarization. From the optimum simulation results by the FDTD method[1], design parameters such as EMC dipole length, width, height and offset are discussed at 12CHz. The array characteristics of 5-elements and 10-elements array are also presented. By adjusting geometry of model antenna, we can design dual polarization EMC microstrip dipole antenna for CS system. Direction of nam beam is easily tilted by the control of distance between dipole elements.

  • PDF

Study of Bolt Coupling Torque Conclusion of TRUSS Structure Using PZT Patches (압전소자를 이용한 TRUSS 구조물의 볼트 결합 토크 추정에 관한 연구)

  • Hyun, Han-Su;Kim, Byung-Jin;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.612-615
    • /
    • 2005
  • This studies presented truss frame which use aluminum beam by damage model. Truss frame which each joint part is contracted by bolt contracted conclusion of each bolt by 3.0 N/m. And measured impedance change that appear making bolt 0.5 N/m on damage condition 8 times. Compares impedance change of 5 segments that was set by measurement area and displayed result. To measure torque change of bolt, other damage model did not apply.

  • PDF

The Effect of Structural Models(Membrane or Plate) on the Modal Model Method (구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

An Alternative X-ray Diffraction Analysis for Comprehensive Determination of Structural Properties in Compositionally Graded Strained AlGaN Epilayers

  • Das, Palash;Jana, Sanjay Kumar;Halder, Nripendra N.;Mallik, S.;Mahato, S.S.;Panda, A.K.;Chow, Peter P.;Biswas, Dhrubes
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.784-792
    • /
    • 2018
  • In this letter, a standard deviation based optimization technique has been applied on High Resolution X-ray Diffraction symmetric and asymmetric scan results to accurately determine the Aluminum molar fraction and lattice relaxation of Molecular Beam Epitaxy grown compositionally graded Aluminum Gallium Nitride (AlGaN)/Aluminum Nitride/Gallium Nitride (GaN) heterostructures. Mathews-Blakeslee critical thickness model has been applied in an alternative way to determine the partially relaxed AlGaN epilayer thicknesses. The coupling coefficient determination has been presented in a different perspective involving sample tilt method by off set between the asymmetric planes of GaN and AlGaN. Sample tilt is further increased to determine mosaic tilt ranging between $0.01^{\circ}$ and $0.1^{\circ}$.