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ABSTRACT

An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical 
multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables 
of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical 
slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us 
to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional 
microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, 
homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and 
efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein 
are compared to those of three-dimensional finite element analysis. 
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1. 서  론

 
Application of composite materials has been increased 

to the various fields where high-strength, high-stiffness 
and weight-reduced materials are typically demanded, for 
example, aerospace and automobile industries. Especially, 
the modeling of composite rotor blades used for helicopters, 
wind power generator, and tilt-rotor aircraft is one of the 

popular research fields[1]. Even though the slender beam 
is made of composite materials, most analysis is yet carried 
out by adopting classical Euler-Bernoulli beam theory 
and/or Rankine-Timoshenko beam theory. If a beam is 
sufficiently slender, the classical theory can offer an 
accurate solution. However, it is inappropriate for the 
analysis of composite beams having anisotropic 
characteristics. Thus beam theories have been developed 
to predict the accurate behavior of composite beams[1]. 
Among the refined beam theories, an asymptotic method 
can mathematically guarantee the accurate solutions as 
the order of solutions increases.

In general, there are two types of asymptotic methods; 
a formal asymptotic method, and a variational asymptotic 
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method. First, a variational asymptotic method was 
applied by Hodges and his co-workers[2] to derive a 
Rankine-Timoshenko like beam theory. This has been 
referred to as variational-asymptotic beam sectional 
analysis(VABS) since the work of Cesnik and Hodges[3]. 

On the other hand, there have been many efforts using 
the formal asymptotic method to find the exact interior 
solution by employing either the decay analysis method[4] 
or the averaged boundary conditions[5] for the displacement 
prescribed boundaries. The generalized averaged boundary 
conditions were successively applied to generic anisotropic 
composite beams, which require much less efforts than 
the decay analysis method. Recently, Kim[6] studied the 
asymptotic characteristics of heterogeneous plates with the 
consideration of end effects, and Kim and Wang[7] also 
presented the vibration analysis of composite beams. 

In this paper, the asymptotic approach developed by 
the previous works[5-7] is extended to multiphysics 
problems, anisotropic composite beams under thermal 
loadings are taken as a test-bed example.

 

2. Asymptotic Formulation

A three-dimensional slender composite beam is shown 
in Fig. 1, which has arbitrary cross-sectional geometry 
and material anisotropy. 

2.1 Recursive virtual work
The constitutive equations of a three-dimensional 

thermoelasticity can be derived by assuming the existence 
of the Helmholtz free energy[8]. 

Fig. 1 A composite beam structure with different length 
scales
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where the quantities Cijkl and βij are the elastic and 
thermal expansion coefficients, respectively. From this, 
one can obtain three equations for a three-dimensional 
thermoelastostatic problem. 
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The associated boundary conditions are given by
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in which the overbar represents the prescribed quantity, 
and S(·) denotes the boundary associated with (·). 

To apply the asymptotic expansion method, the small 
parameter is defined first, and the coordinates are scaled 
in the following manner.

32
1 1 2 3, , xxy x y y= = =
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(4)

where a small parameter is defined by

c

h
l

=ò (5)

in which h is the maximum dimension of the cross-section 
of the beam, and lc is the characteristic length of the 
beam. 

The virtual work principle for a three-dimensional 
thermoelasticity can be written as:

ij ij i iS
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s
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W
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Substituting Eq. (2) into Eq. (5) yields the scaled strain 
as:

23 1 ,1
1e = +u uL L
ò

(7)
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where the linear operator matrices are defined in the 
previous works[5-7].

In order to obtain the recursive virtual work at each 
order, the displacement vector and the temperature rise 
have to be asymptotically expanded as follows:
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Substituting Eq. (8) into Eqs. (7) and (2) yields the 
asymptotically expanded strain and stress vectors.
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Finally the recursive virtual work can be obtained by 
substituting Eq. (9) into Eq. (6) as follows:
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2.2 The fundamental solution 
The fundamental solution of the problem can be 

obtained from the zeroth order virtual work that is 
summarized as follows:
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W
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where the superscript t denotes the transpose of  matrices 
or vectors.

The problem is well posed and therefore one can state 
the followings:
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From which, one can find the fundamental solution[4,5] 
that is given as:   
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in which vi(k) and φ(k) are the kth order displacement 
and torsional angle, respectively, at the reference line.

 
2.3 The classical solution

The classical solution can be obtained from the second 
order virtual work, since the first order virtual work is 
found to be zero. This solution is comparable to the 
Euler-Bernoulli theory for beams. At this point, one needs 
to decompose the displacement and temperature rise into 
two parts: fundamental and warping solutions. Let these 
two variables be
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where the terms with tilde and subscript w represent 
the fundamental and warping solutions, respectively. 

The second order virtual work can be obtained by 
substituting Eq. (16) into Eq. (11) and collecting the 
fundamental and warping variables as follows:

(2) (2) (2) (2) (2) (2) (2)ˆ ( , ) ( , )w w wW W Wd d d dq d d dq= +u u%% (17)
 

where the first term in RHS forms the one -dimensional 
macroscopic equation, while the second order solution 
forms the two-dimensional microscopic equation. 

Let us consider the two-dimensional microscopic 
equation in order to find the warping solution by 
neglecting the applied traction. This is written as:
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C

t
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which yields the equation to be solved for the mechanical 
warping displacement. We assume that the temperature 
rise is prescribed over the cross-section. The mechanical 
displacement is discretized by employing a standard 
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isoparametric two-dimensional finite element. After 
discretization, Eq. (18) becomes
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wehre Nu is the shape function matrix. 
Equation (19) can be solved under the orthogonal 

constraint of the warping displacement to the rigid body 
displacement. This orthogonality is realized by 
introducing the Lagrange multiplier in such a way that
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where H and Λ denote the constraint matrix and 
associated Lagrange multiplier vector[9]. 

Equation (22) is now solvable, and the warping 
solution is consequently expressed as follows:

(2) (1) (1) (1) (1)
w e JqG q= +u e (23)

where Γe
(1) represents the cross-sectional deformation due 

to the macroscopic mechanical strain, and Jθ
(1) represents 

the one due to the prescribed temperature rise over the 
cross-section.

The one-dimensional macroscopic equation is derived 
by the second term in RHS of Eq. (17), which is 
associated with the virtual fundamental displacement. 
This is summarized as:
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The stress resultant vector in Eq. (25) can be explicitly 
expressed by
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The first-order classical strain measure e(1) is 
discretized by using a standard one-dimensional finite 
element. The discretized beam equation is then given as 
follows: 
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in which Nb is the shape function matrix for the 
one-dimensional beam equation.

The displacement boundary condition at the clamped end 
can be interpreted as a constraint equation. In the present 
study, the generalized boundary condition proposed by Kim 
et al.[5,9] is adopted, which kinematically modifies the 
boundary condition for V(1). 

The non-classical solutions can be found in the higher 
order virtual works. These calculations are lengthy but 
straightforward, and therefore they are omitted here for a 
brevity. 

4. Results and Discussion

In this study, a simple two-layer angle-ply [45/−45] 
composite beam is considered as a test-bed example in 
order to demonstrate the capability of the proposed 
approach. The width of the beam is 0.08m and the total 
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thickness is 0.08m. The length of the beam is 0.8m. The 
beam is subjected to a 50°C uniform temperature rise. The 
ply material properties(see Table 1) are given by Wang and 
Yu[10]. 

The first-order cross-sectional mechanical deformation 
modes of an isotropic beam are investigated first. The 
Poisson’s effects can be seen for extension and two bending 
modes, and the Saint-Venant’s warping for a torsion mode. 
The thermoelastic mode is also shown in Fig. 2(a), Je

(1), 
where a simple thermal expansion of the cross-section is 
observed as expected.  The second-order cross-sectional 
deformation modes of an isotropic beam are also 
investigated.

 
Table 1 The ply material properties

 Properties Quantities / Units
 E1  133.4MPa
 E2=E3  8.29MPa
 G12=G23=G12  3.81MPa
 ν12=ν13=ν23  0.26
 α11  2.0×10-6 /℃
 α22=α33  27.34×10-6 /℃
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(a)                     (b)
Fig. 2 The cross-sectional thermal deformation mode of 

an isotropic beam: (a) the first-order mode, (b) the 
second-order mode
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(a)                     (b)
Fig. 3 The cross-sectional thermal deformation mode of 

a [45/-45] composite beam: (a) the first-order mode, 
(b) the second-order mode

The non-classical cross-sectional deformations appear at 
the second order warping solution, Γe

(2). The shear 
deformation effects can be seen in two bending modes and 
the cross-sectional distorsion is seen in a torsion mode. The 
second-order thermoelastic mode is identified as the 
thermal higher-order extension mode, as shown in Fig. 2(b). 
These results enable us to determine the dominant 
deformation modes in the thermo-mechanical beam 
problem. 

The first-order mechanical deformation modes and the 
first and second thermoelastic deformation modes of a [45/
−45] composite beam are calculated to investigate the 
composite coupling effects. Because of the anisotropic 
behavior of the angle-ply composite beam(e.g., the 
extension-shear coupling in this case), the mechanical 
deformation modes are more complicated than the isotropic 
beam.  Therefore there are the out-of plane deformations 
even for the first-order extension and bending modes. The 
thermal deformation modes are shown in Fig. 3, where the 
complicated thermal deformation modes are seen. 

5. Conclusion

A multiphysics beam analysis using an asymptotic 
expansion method is presented for a thermo-elasto- static 
problem. The mechanical displacement and temperature 
rise are asymptotically expanded, so that the recursive 
virtual work is obtained at each level. This virtual work 
renders the warping solution and the macroscopic beam 
formulation. A finite element discretization is employed 
to handle composite beams with arbitrary cross-sections 
and material distributions. When the temperature rise is 
prescribed over the beam cross-section, the 
thermo-elasto-static warping solutions are obtained. 
Unlike the isotropic beam, it is found that the thermal 
warping mode shows the complicated distribution over 
the beam cross-section. The proposed approach can be 
extended further to deal with fully coupled 
thermo-electro-mechanical problems for the optimization 
of cross-sectional geometry and material distributions. 
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