DOI QR코드

DOI QR Code

Magnetostatic Coupling Between two Nanowires of Different Width

  • Lee, Han-Seok (Institute of Physics and Applied Physics, Yonsei University) ;
  • Kim, Seung-Ho (Institute of Physics and Applied Physics, Yonsei University) ;
  • Chang, Young-Wook (Institute of Physics and Applied Physics, Yonsei University) ;
  • Yoo, Kyung-Hwa (Institute of Physics and Applied Physics, Yonsei University) ;
  • Lee, J. (Institute of Physics and Applied Physics, Yonsei University)
  • Published : 2009.03.31

Abstract

The magnetostatic interaction between the two magnetic nanowires was studied by using the longitudinal magneto-optical Kerr effect (MOKE). For this purpose two magnetic nanowires having different widths (400 nm, 800 nm) were fabricated on an Si substrate with electron beam lithography and the lift-off method. Magnetic hysteresis loops measured by MOKE showed double switching behavior, corresponding to the separated switching fields of each wire. The switching field of the narrow wire was greatly affected by the separation between the two wires. Based on how the switching field changes with decreasing separation, it is concluded that the magnetostatic field of the 800-nm wire strongly affects the switching of the 400-nm wire when the separation is less than $0.5{\mu}m$.

Keywords

References

  1. J. I. Martin, J. Nogues, K. Liu, J. L. Vincenr, and I. Schuller, J. Magn. Magn. Mater., 256, 449 (2003), and rereferences therein https://doi.org/10.1016/S0304-8853(02)00898-3
  2. T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and T. Shinjo, Science 284, 468 (1999). https://doi.org/10.1126/science.284.5413.468
  3. D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, and R. P. Cowburn, Nat. Mater. 2, 85 (2003) https://doi.org/10.1038/nmat803
  4. G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine, Nat. Mater. 4, 741 (2005). https://doi.org/10.1038/nmat1477
  5. G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine, Phys. Rev. Lett. 97, 057203 (2006). https://doi.org/10.1103/PhysRevLett.97.057203
  6. M. Hayashi, L. Thomas, Ya. C. Rettner, R. Moriya, Y. B. Bazaliy, and S. S. P. Parkin, Phys. Rev. Lett. 98, 037204 (2007). https://doi.org/10.1103/PhysRevLett.98.037204
  7. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005). https://doi.org/10.1126/science.1108813
  8. S. S. P. Parkin, U.S. Patent No. 6834005 (2004).
  9. Jun-Young Lee, Sangkook Choi, and Sang-Koog Kim, J. Magnetics 11, 74 (2006). https://doi.org/10.4283/JMAG.2006.11.2.074
  10. Kab-Jin Kim, Chun-Yeol You, and Sug-Bong Choe, J. Magnetics 13, 136 (2008) https://doi.org/10.4283/JMAG.2008.13.4.136
  11. Seung-Ho Kim, Han-Seok Lee, Seung-Hyun Lee, Woo-Young Lee, J. Lee, J. Magnetics 13, 167 (2008). https://doi.org/10.4283/JMAG.2008.13.4.167
  12. S. M. Cherif, Y. Roussigne, C. Dugautier, and P. Moch, J. Magn. Magn. Mater. 222, 337 (2000). https://doi.org/10.1016/S0304-8853(00)00581-3
  13. S. Goolaup, A. O. Adeyeye, N. Singh, and G. Gubbiotti, Phys. Rev. B. 75, 144430 (2007). https://doi.org/10.1103/PhysRevB.75.144430