• Title/Summary/Keyword: coupled transmission lines

Search Result 81, Processing Time 0.026 seconds

A Miniaturized CMOS MMIC Bandpass Filter with Stable Center Frequency for 2GHz Application

  • Kang, In Ho;Guan, Xin
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.737-740
    • /
    • 2012
  • A miniaturized CMOS bandpass filter for a single RF transceiver system is presented, using diagonally end-shorted coupled lines and lumped capacitors. In contrast to conventional miniaturized coupled line filters, it is proven that the effective permittivity variation of the coupled transmission line has no effect on shifting the center frequency when the bandpass filter is highly miniaturized. A bandpass filter at a center frequency of 2 GHz was fabricated by $0.18{\mu}m$ CMOS technology. The insertion loss with the die area of $1500{\mu}m{\times}1000{\mu}m$ is -5.14 dB. Simulated results are well agreed with the easurements. It also verify the center frequency stability in the compact size bandpass filter.

An Indoor Broadcasting System Using Light-Emitting Diode Lamps Coupled with Power Line

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.342-347
    • /
    • 2015
  • We introduce an indoor broadcasting system using light-emitting diode (LED) lamps coupled with a 220 V power line. Two couplers connected to the power line constitute a power line communication (PLC) link. The transmission path from an LED lamp to a photodetector forms a visible light communication (VLC) link in free space. When the LED lamp is coupled to the power line, a composite PLC-VLC link is formed, making it possible to transmit a VLC signal beyond line-of-sight. In experiments, a 4 kHz analog signal modulated with a 100 kHz carrier was sent to the power line by a PLC coupler, and LED lamps coupled to the power line detected the signal and radiated it to multiple VLC receivers in the room. This configuration is useful in expanding an indoor VLC sensor network to adjacent rooms or constructing a voice broadcasting system in a building or apartments with existing power lines.

Improvement of Attenuation Characteristics for Multiple Coupled Line Structure on the Specific Lossy Media (특정 손실 매질위의 다중 결합선로에 대한 손실특성 개선)

  • Kim, Yoon-Suk;Kim, Min-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.35-41
    • /
    • 2011
  • In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain(FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Parameters of symmetric coupled MIS transmission line with various gaps between crossbars for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Signal Integrity Analysis of High Speed Interconnects In PCB Embedded with EBG Structures

  • Sindhadevi, M.;Kanagasabai, Malathi;Arun, Henridass;Shrivastav, A. K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.175-183
    • /
    • 2016
  • This paper brings out a novel method for reducing Near end and Far end Crosstalk using Electromagnetic Band Gap structures (EBG) in High Speed RF transmission lines. This work becomes useful in high speed closely spaced Printed Circuit Board (PCB) traces connected to multi core processors. By using this method, reduction of −40dB in Near-End Crosstalk (NEXT) and −60 dB in Far End Crosstalk (FEXT) is achieved. The results are validated through experimental measurements. Time domain analysis is performed to validate the signal integrity property of coupled transmission lines.

Broadband $180^{\circ}$ Bit X-band Phase Shifter Using Payallel-Coupled tines (평행 결합선로를 이용한 광대역 $180^{\circ}$ Bit X-대역 위상 변이기의 설계)

  • Sung Gyu-Je;Park Hyun-Sik;Kim Dong-Yen
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.175-179
    • /
    • 2005
  • A novel, simple and broadband $180^{\circ}$ bit X-band phase shifter was proposed and fabricated in a standard micromachining process. It is composed of two $90^{\circ}$ parallel-coupled lines; one of which is shorted and the other is grounded. Design equations for the proposed $180^{\circ}$ bit phase shifter are derived by the method of even and odd mode analysis. Based on design equations, $180^{\circ}$ bit phase shifter was designed and fabricated to operate from 7 to 13 GHz with ${\pm}5^{\circ}$ of phase deviation.

  • PDF

Signal transient simulation of multi-coupledm frequency-variant transmission lines (주파수 종속 다중 전송선의 신호 천이 특성)

  • Cho, Young-Il;Eo, Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.89-101
    • /
    • 2006
  • Frequency-variant transmission line parameters are determined. Then the signal transient characterizations of frequency-dependent multi-coupled lines are investigated. With the proposed method, an accurate signal integrity degradation such as signal ringing (overshoot, undershoot) and crosstalk noises relevant to the switching patterns of signals, rising / falling time(tr, tf) and line lengths is investigated. It is shown that there may be approximately 26% discrepancy of signal transients and 260% difference of crosstalk noises between the constant RLC model and frequency-variant RLC model in on-chip global interconnects while those of package lines are 11% and 70%, respectively.

Accurate Signal Integrity Verification of Transmission Lines Based on High-Frequency Measurement (고주파 전송선 회로의 실험적 고찰을 통한 정확한 시그널 인테그러티 검증)

  • Shin, Seung-Hoon;Eo, Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.82-90
    • /
    • 2011
  • An accurate signal integrity verification method based on high-frequency measurements is proposed. For practical transmission lines that require a package process, process variations metal roughness and skin effects and boundary conditions may have deteriorative effects on circuit performance. These effects are represented in terms of parameters that can be readily utilized for field-solver. Thereby a more accurate signal integrity verification using field-solver can be achieved. It is shown that in both single and coupled lines the signal transients using the proposed method have excellent agreement with the measurement data.

Closed-Form Time Domain Solutions for Multiconductor TEM Lines (TEM 다중 전송 선로에 대한 Closed-Form 형태의 시간 영역 해석)

  • Jeong, Jae-Hoon;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.680-688
    • /
    • 2007
  • Time domain closed-form analytical solutions to the coupled telegrapher's equations for the voltage and current on a lossless multiconductor transmission line are presented. The resulting expressions are obtained in the form of exact time domain propagators operating on the line voltage and current. Time domain numerical methods are developed and examples showing exceptionally accurate results are obtained for uniform and nonuniform; symmetric and asymmetric strip lines.

Design of an extremely miniaturized planar ring hybrid

  • Kang, In Ho;Sun, Shu Zhong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.752-759
    • /
    • 2013
  • This paper presents a method for analyzing and designing an extremely miniaturized planar ring hybrid, using the combination of parallel and diagonally shorted coupled lines. In contrast to conventional miniaturized coupled line filters, it is proven that the required electrical length of transmission line can be largely reduced to even a few degrees, not only effectively suppressing the spurious passband but also approximately maintaining the same characteristic around the stable center frequency. A ring hybrid filter at center frequency of 1 GHz was fabricated on the FR4 epoxy glass cloth copper-clad plat (CCL) PCB substrate. The insertion loss of a ring hybrid filter with the die area of $30mm{\times}30mm$ is -4.68 dB. Simulated results are well agreed with the measurements.

The Dual-Mode Ring-Resonator Bandpass Filter Using Artificial-Transmission-Lines (인공전송선로를 이용한 이중모드 링-공진기 대역통과 여파기)

  • Sim, Kyung-sub;Hwang, Hee-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.424-429
    • /
    • 2016
  • This paper presents dual-mode ring-resonator bandpass filter using LUC of artificial-transmission-lines. The conventional ring-resonator bandpass filter has limitation in miniaturization because the conventional ring-resonator is based on a one wavelength operation, and problem due to undesire harmonics. The ring-resonator bandpass filter is miniaturized and show higher order mode rejection by configuring a ring-resonator with LUC of artificial-transmission-lines. The two-stage bandpass filter is designed and fabricated with a ring-resonator and input/output interdigital coupled line. A fabricated filter shows dual-mode, rejection of whole ultra wide band, sharp skirt characteristics and has ring area reduced by 60 % compared to the conventional ring-resonator bandpass filter.